
NASA Contractor Report 3011

Design Study of Software4mplemented
Fault-Tolerance (SIFT) Computer

J. H. Wensley, J. Goldberg, M. W. Green,
W. H. Kautz, K. N. Levitt, M. E. Mills,
R. E. Shostak, P. M. Whiting-O'Keefe,
and H. M. Zeidler

CONTRACT NAS1-13792

JUNE 1982

NASA

TECH LIBRARY KAFB, NM

NASA Contractor Report 3011

Design Study of Software-Implemented
Fault-Tolerance (SIFT) Computer

J. H. Wensley, J. Goldberg, M. W. Green,
W. H. Kautz, K. N. Levitt, M. E. Mills,
R. E. Shostak, P. M. Whiting-O’Keefe,
and H. M. Zeidler
SRI International
MenZo Park, Cal$ornia

Prepared for
Langley Research Center
under Contract NAS 1- 13792

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1982

CONTENTS

LIST OF TABLES . v i i i

I INTRODUCTION . 1

I1 SIGNIFICANT RESULTS AND OUTSTANDING PROBLEMS 5
A . Significant Research Results 5

B . Outstanding Problems 8

111 TECHNICAL PLAN FOR FUTURE DEVELOPMENT OF SIFT 9

A . Introduction . 9

B . The Relevance of Analytic Techniques.
Simulation. Emulation. Experimental Models.
Prototypes. and Flight Model in the
Development Process 9

1 . Introduction 9
2 . Outline of the Plan 10
3 . Justification of the Plan 14

C . Recommendations 1 7

1 . Step 1-- Current Contract 18
2 . Step 2.. Complete Design of SIFT 19
3 . Design Review 27
4 . Step 3 . 28
5 . Steps 4 and 5 30

IV THE SIFT CONCEPT . 33

A . Introduction . 33

B . SIFT Performance and Reliability Goals 34

C . SIFT System Design 34

D . The Design Methodology38

E . Design Features of SIFT 39

1 . Task Dispatching 39
2 . Task Communication 4 0
3 . Detection and Location of Processor

and Bus Failures 42

F . The Logical Structure of SIFT 46

G . Discussion . 47

'

iii

. .

........... I.,_." . ."

V TASK STRUCTURE. ALLOCATION AND SCHEDULING
A . Introduction .
B . Flight Phase Analysis
C . Review of Task Characteristics for Flight

Phase Assignment and Processor-Memory
Unit Allocation

D . Task Allocation and Schedule Generation
E . Schedule Derivation
F . Schedule Representation and Notation
G . Sample Schedule Derivation
H . Conclusion .

VI HARDWARE DESIGN .
A . Bus Interconnection Network

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .
10 .
11 .
12 .

Introduction
Design Alternatives
Parallel Transfer
Bit-Serial Transfer
Byte-Serial Transfer
Comparative Analysis of Cost Measures
Networks with More Than Three Levels
Modularization of the Bus Interconnection
Network .
Comparison of Delay Times
Fault Tolerance Aspects
Routing .
Conclusion

B . Input/Output Subsystem
1 . Introduction and Summary
2 . Critical Input/Output Units
3 . Noncritical Input Units
4 . Noncritical Actuator Units

C . SIFT Memory System Design
1 . Introduction and Summary
2 . Memory Hierarchy
3 . Memory Technologies
4 . Special Logical Functions
5 . Fault Tolerance
6 . Performance Specifications

D . Processors .
E . Power Supply System

51

51

52

52

54

66

6 7

68

76

79

79

79
80
84
93
94
95
98

100
101
104
106
108

109

109
110
111
112

112

112
114
116
119
121
126

129

131

iv

VI1 RELIABILITY ANALYSES
A . Summary .
B . Motivation .
C . The Reliability Model
D . Analytical Techniques
E . Models and Programs
F . Computational Results and Interpretations

VI11 THE HIERARCHICAL DESIGN METHODOLOGY
IX HIERARCHICAL ORGANIZATION OF SIFT

A . The Hierarchical Methodology Relative to SIFT . . .
B . Stage 0 of the Methodology for SIFT
C . Stage 1 as Applied to SIFT
D . Formal Specification of SIFT

1 . Introduction
2 . The FUNCTIONS Section
3 . The DECLARATIONS Section
5 . The DEFINITIONS Section
6 . The EXCEPTIONS Section
4 . The PARAMETERS Section

APPENDIX
A MARKOV PROCESSES

139

139

140

141

142

147

151

163

179

179

184

186

192

192
194
197
198
198
199

227

V

.

ILLUSTRATIONS

111-1

IV-1

IV-2

IV -3

IV-4

IV-5

IV-6

v-1

v-2

v-3

v-4
v-5

VI -1

VI-2

VI -3

VI-4

VI -5

VI-6

VI-7

VI -8
VI -9
VI . 10

VI-11

VI-12

VI-13

VI-14

VI-15

VI-16

SIFT Development Plan
System Configuration
Example of Task/Processor Allocation
Snapshot of a Sample Schedule
for Two Community Buffers Task Schedules Demonstrating the Need

Bus Assignments to Enable Single Fault Location . . .
Illustrations of Fault-Location Algorithm
Allocation Algorithm
Schedule Representation Examples

Flight Phase .
Alternate Schedule Representation
Schedule Derivation Flowchart
Interconnection Network
Possible Interconnection Schemes
Scanner and Switch Functional Block Diagram
Scanner and Switch Logic Circuitry

Sample Schedule Derivation for the Landing

Two-Level Network Block Diagram
Example of a Three-Level Network
Gate Costs for Parallel Transfer
Gate Costs for Bit-Serial Transfer b = 4
Example of a Five-Level Network
Five-Level Network Using 2 X 2 and 3 X 3
S-Units in Alternate Levels
Arrangement of Units to Achieve Fault Tolerance . . .
Input/Output for Critical Sensors and Actuators . . .
Typical Aircraft Alternator/Regulator System
Schematic of DC-10 Power System
Overvoltage Protection Circuit
Connection Between Power Sources and Processors . . .

11

35

37

40

42

43
45

63

69

70

71

72

81

82

85

86
89

90

96

98
99

101

104

110

133

134

136

13 7

vi

VI-17
VI1 . 1
VII-2

VII-3

VI1 -4
VII-5

VII-6

VII-7

VI11 . 1
VI11 -2

VIII-3

VIII-4

IX- 1

IX- 2
IX-3

Power Sources and Processors Connection Pattern
A Simplified SIFT Model
Model I State-Diagram
Model I Behavior
Model I1 State-Diagram
Model I1 Behavior
Model IV State-Diagram
Model IV Behavior
Decomposition in Terms of Function
Illustration of a Functional Hierarchy
Dependency Set
Example of Concepts and Definitions
Description of State Changes. Representation
Mappings. and Implementations in Adjacent
Abstract Machines
Hierarchical Structure of SIFT
Timing Diagram for Two Communicating Processes

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

138

145

151
153

154

157
158

161
166

167

171
173

183

187
203

v i i

. .

TABLES

V - 1 System Configuration Analysis
V-2 Adjustments and Modifications

to the Initial Task Specifications
V-3 Task Module Properties for Scheduling Assignments . .
V-4 Allocation of all Tasks Triply Replicated

across Five Processors
V-5 Table of Automated Flight Phase Tasks

and the Characteristics Used to Distribute Them
over Processor-Memories

V-6 Allocation Examples--Distributed Assignment
of Autoland Phase Tasks over Five Processor-
Memory Units .

VI-1 Summary of Maximum Delay Times DQ,,,
VI-2 Summary of Costs for Network Realization

Using All-Identical Modules
VII-1 Sample Output .
VII-2 Failure Rates for Reconfiguration Time

of One Second as Computed by Model IIA
VII-3 Typical Output from Model I1 Program
VII-4 Transient Recovery Probability

and Transient Error Rates
VIII-1 Module Array .
VIII-2 Specification of Module Stack

53

55

56

61

64

65

102

103

149

150
156

160

174

175

v i i i

I INTRODUCTION

T h i s r e p o r t c o v e r s t h e r e s e a r c h c a r r i e d o u t by SRI on con t r ac t

NASI-13792 (SRI p r o j e c t 4026) d u r i n g t h e p e r i o d 5 February 1975 t o

5 February 1976. The p r imary goa l o f t he r e sea rch i s t o des ign a f l y -

a b l e SIFT computer t h a t c a n d e m o n s t r a t e t h e f e a s i b i l i t y o f a n i n t e g r a t e d

func t ion , fau l t - to le ran t computer in connnerc ia l av ia t ion .

P r i o r r e s e a r c h by S R I on con t r ac t NASI-10920 (SRI p r o j e c t 1406)

[Refs. 1,2] over the per iod October 1972 to October 1973 cons ide red t he

d e s i g n o f f a u l t - t o l e r a n t c o m p u t e r a r c h i t e c t u r e s and, i n p a r t i c u l a r :

J;

e The computa t iona l and r e l i ab i l i t y r equ i r emen t s o f an
advanced t ransonic commerc ia l t ranspor t a i rc raf t us ing
f ly-by-wire t echniques wi th a un i f i ed d ig i t a l comput ing
system.

e The impac t of modern d i g i t a l c i r c u i t t e c h n o l o g y o n t h e
des ign of such a computer.

e C a n d i d a t e a r c h i t e c t u r e s f o r a computer t o s a t i s f y t h e
requirements.

One of t h e a r c h i t e c t u r a l c o n c e p t s c o n c e i v e d i n t h a t s t u d y was given

t h e name "SIFT" (Software-Implemented Fault-Tolerance). It showed g r e a t

p romise o f s a t i s fy ing t he extreme r e l i a b i l i t y r e q u i r e m e n t s o f t h i s a p p l i -

c a t i o n class. The d e t a i l e d d e s i g n o f a computer based on the SIFT con-

cep t i s t he p r imary ob jec t ive o f t he s tudy r epor t ed he re .

The g o a l s o f t h e e f f o r t were:

(1) To develop the SIFT des ign concep t t o a p o i n t a t
which i t s p o t e n t i a l r e l i a b i l i t y may be evaluated
wi th reasonable accuracy .

(2) To i n v e s t i g a t e a l t e r n a t e s t r a t e g i e s f o r p h y s i c a l
imp lemen ta t ion , u s ing ava i l ab le o r spec ia l ly des igned
components .

*
Numbered r e f e r e n c e s are l i s t e d a t the end of the chapter .

(3) To prove the cor rec tness o f the hardware and sof tware
des i gns .

(4) To model the sys tem and eva lua te i t s e f f e c t i v e n e s s
from a f a u l t - t o l e r a n c e p o i n t of view .

To ach ieve t hese goa l s , t he r e sea rch was d i r e c t e d a t t h e c r i t i ca l

a spec t s o f t he des ign , l eav ing less c r i t i c a l a s p e c t s t o a la ter phase

i n t h e r e s e a r c h program.

Some o f t he r e sea rch r e su l t s r epor t ed he re have been p rev ious ly

d i scussed i n t he mon th ly t echn ica l p rog res s r epor t s and i n a series of

s even t echn ica l memos tha t have been i s sued du r ing t he cour se o f t h i s

s t u d y . I n a d d i t i o n , a Technica l P lan for the Future Development of SIFT

w a s i s s u e d i n November 1975.

2

REFERENCES

1. J. H. Wensley, K. N. Levitt, M. W. Green, J. Goldberg, and
P. G. Neumann, "Design of a Fault-Tolerant Airborne Digital
Computer," Vol. I, Architecture, Final Report. NASA
CR-132252, 1973.

2. R. S. Ratner, E. B. Shapiro, H. M. Zeidler, S. E. Wahlstrom,
C. B. Clark, and J. Goldberg, "Design of a Fault Tolerant
Airborne Digital Computer," Vol. 11, Computational Require-
ments and Technology, Final Report. NASA CR-132253, 1973.

3

I1 SIGNIFICANT RESULTS AND OUTSTANDING PROBLEMS

In this section we summarize the significant research results

achieved in this study, and we identify significant problems that remain..

A. Significant Research Results

The principal objective of the study was to carry out a refinement

of the SIFT concept, thereby reducing uncertainties in the design. The

intent was to prove the feasibility of a design based on the SIFT con-
cept with an eventual goal of a flyable prototype (or "brassboard"). A

significant result of our current study is that in this process of re-

fining the design, no radical changes have had to be made. Indeed the

fundamental SIFT concepts that distinguish it from other fault-tolerant

computer architectures remain, namely:

e A l l fault-tolerance procedures (error detection, error
correction, diagnosis, and reconfiguration) carried out
by software.

e No essential special fault-tolerance--different replica-
tion possible for different tasks, or at different times
for the same task.

e Very high reliability achieved without the need for high
intrinsic reliability of subunits of the system.

e Reconfiguration on the basis of complete processor/memory
modules or complete busses.

e An ability to use fairly standard units such as processors
and memories, with an attendant gain in reliability by
taking advantage of the stability of production processes
with standard high-volume production.

The development of these concepts leads to a design with the follow-

ing characteristics:

e Replicated units do not operate in lock-step mode but are
only loosely synchronized. The communication between CPUs
is asynchronous, thereby removing the need for an ultra-
reliable system clock.

5

e Agreement between repl icated uni ts i s v e r i f i e d o n l y a t
the complet ion of program segments (tasks) .

0 F a u l t y u n i t s are n o t n e c e s s a r i l y removed b u t c a n b e e i t h e r

e Trans ien t fau l t s do no t necessar i ly cause permanent removal
o f t h e f a u l t y u n i t s . F u r t h e r m o r e , t h e l o o s e n e s s o f s y n -
c h r o n i z a t i o n among sets o f t a s k s makes i t p o s s i b l e t o
enhance immunity f rom t ransients by providing that redun-
d a n t v e r s i o n s o f a computation may be done a t d i f f e r e n t
moments i n time.

i g n o r e d o r a s s i g n e d t o t a s k s h a v i n g n o o v e r a l l e f fec t .

0 The degree o f f au l t - to l e rance can be d i f f e r e n t f o r d i f f e r e n t
tasks be ing per formed and can be d i f fe ren t a t d i f f e r e n t times
f o r t h e same t a s k .

e No spec ia l hardware i s u s e d t o c a r r y o u t f a u l t d e t e c t i o n
o r c o r r e c t i o n .

e Communication between CPUs i s minimized s o t h a t low band-
wid th busses can be used , thereby fac i l i t a t ing phys ica l
separat ion of modules in environments where physical
damage i s a hazard.

0 The design concept i s independent of the way i n which
t h e u n i t s are b u i l t ; i . e . , no s p e c i a l i z a t i o n o f CPU o r
memory des ign i s r e q u i r e d f o r f a u l t t o l e r a n c e , t h e r e b y
a l lowing t he cho ice t o be based on o the r p rope r t i e s , e .g . ,
s p e e d , a v a i l a b i l i t y .

e The to t a l comput ing power of the sys tem can be var ied by
u s i n g u n i t s o f d i f f e r e n t s p e e d o r by changing the number
o f u n i t s .

D u r i n g t h e c u r r e n t s t u d y a l l c r i t i c a l uni ts of both hardware and

sof tware have been s tudied. The fol lowing are the key r e su l t s ob ta ined :

There i s no r equ i r emen t fo r a c e n t r a l w o r k i n g memory,
b u t t h e r e i s j u s t i f i c a t i o n f o r a back-up , nonvola t i le
memory, e .g . , magnet ic bubble memory (VI-C).*

e Viab le s t ruc tu res fo r t he i npu t /ou tpu t subsys t ems have
been developed (VI-B) .

e Trade-of f s tud ies o f the bus sys tem des ign have been
c a r r i e d o u t . C o n s i d e r a t i o n h a s b e e n g i v e n t o c o s t ,
component count , de lay , bandwidth , re l iab i l i ty , and
s t r u c t u r a l s i m p l i c i t y o f d i f f e r e n t b u s s t r u c t u r e s , w i t h
a c o n c l u s i o n t h a t a t w o - l e v e l s t r u c t u r e i s preferred (VI-A).

*
P a r e n t h e s i z e d n o t a t i o n s i n d i c a t e t h a t c h a p t e r o r s e c t i o n o f t h i s r e p o r t
i n w h i c h t h e p a r t i c u l a r r e s u l t i s d i s c u s s e d i n more d e t a i l .

A d e q u a t e p r o t e c t i o n a g a i n s t e x t e r n a l power t r a n s i e n t s
e f f e c t i n g t h e power suppl ies can be provided, and
f a u l t - t o l e r a n c e o f t h e power system can be economically
achieved (VI-E) .
O p t i c a l t r a n s m i s s i o n o f f e r s a c o s t - e f f e c t i v e way of pro-
t e c t i n g a g a i n s t i n d u c e d t r a n s i e n t s i n d a t a p a t h s .

Sa t i s f ac to ry me thods have been dev i sed fo r a l l oca t ing
tasks be tween processors and for devis ing and repre-
s e n t i n g s u i t a b l e s c h e d u l e s (V).

R e l i a b i l i t y a n a l y s e s show t h a t a system employing f ive
p r o c e s s o r s a n d f o u r b u s s e s y i e l d s s a t i s f a c t o r y r e l i a b i l i t y ,
w i t h g r e a t e r r e p l i c a t i o n y i e l d i n g e v e n b e t t e r r e l i a b i l i t y (V I I) .

Fo rma l p roo f s o f t he r e l i ab i l i t y p rope r t i e s o f t he sys t em
can be ca r r i ed ou t i n a r i g o r o u s manner, t hus p rov id ing
a s su rance o f t he co r rec tness o f t he des ign , and a l so t he
c o r r e c t n e s s o f t h e r e l i a b i l i t y model (VII).

The d e s i g n o f t h e s o f t w a r e , i n c l u d i n g t h e f a u l t - t o l e r a n c e
f ea tu res , can be spec i f i ed i n a fo rma l abs t r ac t manner,
t h u s e n a b l i n g t h e p r o o f s r e f e r r e d t o a b o v e a n d a s s i s t i n g
i n t r a n s p o r t i n g t h e d e s i g n a c r o s s d i f f e r e n t h a r d w a r e
implementat ions (VIII) .

I n c a r r y i n g o u t t h e d e s i g n s t u d y i t has been necessary to deve lop

a methodology for design and analysis. While t h i s methodology has been

aimed d i r e c t l y a t the ob jec t ives o f the cur ren t s tudy , they have grea t

r e l e v a n c e i n t h e w i d e r c o n t e x t o f f a u l t - t o l e r a n t c o m p u t e r d e s i g n a n d

beyond t h a t t o t h e d e s i g n a n d a n a l y s i s of computer systems i n g e n e r a l .

The p r inc ipa l f ea tu re s o f t h i s me thodo logy a r e :

0 Techniques for formal specification of complex computer
systems.

0 Techniques for formal p roof o f cor rec tness o f des ign .

T e c h n i q u e s f o r t h e a n a l y s i s o f r e l i a b i l i t y o f f a u l t -
tolerant computer systems.

0 Techn iques fo r a l l oca t ing t a sks among processors and for
des igning and represent ing schedules wi th in p rocessors
of a multiprogrammed multiprocessor computing system.

These t echniques represent a powerful r igorous methodology of design

and ana lys i s t ha t can have a s i g n i f i c a n t i m p a c t o n f u t u r e d e s i g n e f f o r t s .

7

.

B. Outstanding Problems

While our study has considered all the critical design and analysis

issues, there remain some outstanding problems both in the development of

SIFT and in the design of fault-tolerant computers in general. The major

outstanding needs that we see are for:

Continued refinement of the SIFT design to include all
design aspects and, in particular, to develop costlperformancel
reliability trade-offs to enable optimized versions of SIFT
to be produced.

0 More definitive data on the intrinsic reliability of different
electronic technologies, particularly the newest ones, e. g.,
CMOS Large-Scale Integrated (LSI) circuits.

e Improved methods for the analysis of coverage, particularly
of diagnosis techniques .

e More definitive data on the nature and incidence of massive
transient disturbances, e.g., as caused by lightning strikes.

0 A systematic study of the inputloutput units within an
aircraft (sensors, actuators, etc.) and of their per-
formance and reliability characteristics.

Most of these problems are considered in the technical plan for '
future development of SIFT.

8

I11 TECHNICAL PLAN FOR FLTTURF, DEVELOPMENT OF SIFT

A. I n t r o d u c t i o n

The material p r e s e n t e d i n t h i s c h a p t e r w a s p rev ious ly pub l i shed

i n November 1975 as an informal document. It is i nc luded he re so t h a t

t h i s r e p o r t c a n b e a self-contained document .

The p lan as p resen ted he re i s t h a t o r i g i n a l l y s u b m i t t e d . Sub-

sequent d i scuss ions be tween NASA s t a f f and SRI have r e su l t ed i n a

recommendation t h a t c e r t a i n t a s k s s h o u l d be delayed from Step 2 t o

S tep 3 . These are the tasks "Test Procedures" and "Aircraf t Test

I n t e r f a c e " as shown i n F i g u r e 111-1.

The p lan i s p r e s e n t e d i n d e t a i l f o r t h e p e r i o d up t o November 1976,

by which t i m e t he des ign i s expec ted t o have been comple t ed i n su f f i c i en t

d e t a i l t o e n a b l e p r o c u r e m e n t of equipment. The spec i f i ca t ion o f sys t em

so f tware (l oca l and g loba l execu t ives) w i l l h a v e b e e n f u l l y s p e c i f i e d t o

enab le p rog ram wr i t i ng t o commence. The p l an i s p r e s e n t e d i n more gen-

eral terms f o r t h e p e r i o d beyond November 1976. We d i s c u s s i n t h i s

document the impor tance o f s t rong in te rac t ion wi th o ther segments o f

i ndus t ry such as t h e a i r l i n e s , a i r f r a m e m a n u f a c t u r e r s , a v i o n i c s manu-

fac turers , and semiconductor manufac turers , and a l so wi th o ther re la ted

r e sea rch and development centers, e.g., NASA-Ames STP:AMD p r o j e c t and

NASA Houston Space Shuttle Development.

B. The Relevance of Analytic Techniques, Simulation, Emulation,

Exper imenta l Models , Pro to types , and F l igh t Model i n t h e

Development Process

1. I n t r o d u c t i o n

The pr imary goa l o f the SRI e f f o r t i s a f l y a b l e SIFT computer

t h a t c a n d e m o n s t r a t e t h e f e a s i b i l i t y o f a n i n t e g r a t e d - f u n c t i o n , f a u l t -

t o l e ran t compute r i n commerc ia l av i a t ion . Because of the complexity of

9

i

such a computer and the importance of the demonstrat ion, it i s d e s i r a b l e

t o a c h i e v e a high level o f c o n f i d e n c e i n t h e d e s i g n b e f o r e a f l i g h t model

is b u i l t .

For a computer system, such confidence may be achieved through

v a r i o u s means o f v a l i d a t i o n s u c h as human des ign review, fo rma l ana lys i s

and proof , s imulat ion, emulat ion, and the tes t ing of physical prototypes.

Fu r the rmore , i n any ve ry complex system i t i s common p r a c t i c e t o p r o c e e d

w i t h t h e v a l i d a t i o n i n s e v e r a l s t e p s , e a c h s t e p d e a l i n g w i t h d i f f e r e n t

l eve l s o f abs t r a t ion and approx ima t ion . Va l ida t ion exe rc i se s can be

very expensive and time consuming, so i t i s d e s i r a b l e t o c h o o s e a s t r a t -

egy f o r v a l i d a t i o n t h a t w i l l y i e l d a h igh l eve l o f con f idence qu ick ly

and with low c o s t .

The design approach SRI i s u s i n g f o r SIFT i s u n u s u a l i n t h a t

both the hardware and the execut ive sof tware w i l l have precise, formal

s p e c i f i c a t i o n s . I n t h i s s e c t i o n w e w i l l p r e s e n t a p l a n f o r d e s i g n va l i -

d a t i o n t h a t t a k e s a d v a n t a g e o f t h i s d e s i g n a p p r o a c h . We b e l i e v e t h e

p lan i s both e f fec t ive and economica l compared to reasonable a l te rna t ives .

2. Out l ine o f t he P l an

We propose the fo l lowing s teps :

(1) Abst rac t spec i f ica t ion and proof o f sof tware and
hardware.

(2) Des ign of p rograms and log ic ; inves t iga t ion of
nonlogica l* des ign i s sues .

(3) Val ida t ion o f t he des ign i nc lud ing cons t ruc t ion
o f a prototype computer.

(4) Tes t ing o f t he p ro to type and cons t ruc t ion and
c e r t i f i c a t i o n o f a n e x p e r i m e n t a l model f l i g h t
computer.

(5) F l i g h t t e s t s .

*
By "nonlogical" we mean f a c t o r s s u c h as packaging, device performance ,
f a u l t modes, e t c . , t h a t are n o t i n c l u d e d e x p l i c i t l y i n p r o g r a m s o r
l og ic des igns .

10

FIGURE 111-1 SIFT DEVELOPMENT PLAN

Between Steps 2 and 3 w e p ropose t ha t a des ign review take p lace .

This should be conducted by both S R I and NASA p e r s o n n e l o r t h e i r r e p r e -

s e n t a t i v e s .

S tep 1 w i l l i nc lude t he execu t ive so f tware and the major system

modules , taken to a level o f d e t a i l t h a t c o m p r i s e s w e l l - u n d e r s t o o d s o f t -

ware and hardware functions. Some f a u l t - t o l e r a n c e f u n c t i o n s w i l l be

pa rame te r i zed t o a l l ow some use r f r eedom in t he cho ice o f f au l t - to l e rance

po l i c i e s . Aux i l i a ry so f tware such as d i a g n o s t i c r o u t i n e s and system

e x e r c i s e r s w i l l n o t b e i n c l u d e d i n t h i s s t a g e .

S t ep 2 w i l l r e s u l t i n t h e c o m p l e t e s p e c i f i c a t i o n o f t h e com-

pu te r sys t em to a l e v e l o f d e t a i l t h a t w i l l be su f f i c i en t fo r equ ipmen t

and software procurement. The ha rdware spec i f i ca t ions w i l l i nc lude s ta te-

men t s o f func t iona l capab i l i t y , pe r fo rmance pa rame te r s , r e l i ab i l i t y con -

s t r a i n t s , i n t e r f a c e s p e c i f i c a t i o n s , and packaging constraints . The s o f t -

ware s p e c i f i c a t i o n s w i l l a l so con ta in func t iona l r equ i r emen t s and p e r -

formance parameters and, i n a d d i t i o n , w i l l be accompanied by sample i m -

p lementa t ion schemes . Cer ta in nonlogica l des ign i s sues w i l l be i nves t i -

gated. These include choice of device and interconnect ion technologies ,

packaging and shielding, power supp ly des ign , and spec i f i ca t ion o f pe r iph -

e r a l e q u i p m e n t s u c h a s d i s p l a y s and s torage un i t s . In format ion concern ing

f a u l t modes w i l l be acqu i r ed and app l i ed t o t he l og ica l des ign and execu-

t ive p rograms.

A t t h i s s t a g e a design review should take place. The purpose

o f t h i s r e v i e w i s t o make a detai led examinat ion of the design, which had

not been poss ib le before a complete design existed. While w e are conf iden t

t h a t t h e r e w i l l be l i t t l e need for change in the bas ic sys tem concepts , w e

do see t h e p o s s i b i l i t y o f c h a n g e s i n some of the parameters of the system.

This review should a lso examine the assumptions upon which the re l iabi l i ty

analyses were based.

The p ro to type compute r t o be p rocured i n S t ep 3 w i l l be r e a l i z e d

m a i n l y i n t h e same techno logy t ha t i s expec ted t o be u sed i n a f l i g h t -

exper imenta l model. The sof tware w i l l be ex tended to inc lude sample appl i -

ca t ion programs, in - f l igh t d iagnos t ic p rograms, and bas ic checkout p ro-

grams. In s t rumen ta t ion w i l l be provided both in software and hardware,

13

and an external computer w i l l be programmed t o d r i v e t h e SIFT computer

so as t o s i m u l a t e t h e a i r c ra f t environment. Hardware developments w i l l

i nc lude power suppl ies , c locks and in te rconnec t ions , and connec t ions wi th

p e r i p h e r a l u n i t s s u c h as bubble memories and a i r c r a f t c i r c u i t s , The

computer w i l l b e a n a l y z e d i n o r d e r t o g u i d e (1) t h e f i n a l d e s i g n o f i n t e r -

connections and packaging and (2) t he des ign o f test procedures. A s d i s -

cussed a t the end of the next sec t ion , a l i m i t e d amount o f e v o l u t i o n w i l l

be a l lowed i n t he p ro to type . Examples o f mod i f i ca t ions t ha t migh t be

planned are (1) change in i n t e rconnec t ion t echno logy , e .g . , t he i n t ro -

duc t ion o f op t i ca l coup le r s and special power-supply c i rcui ts , and (2)

replacement of some changeable memories by read-only memories, e.g., f o r

microprograms or programs.

The f l i g h t computer of Step 4 w i l l be ruggedized and shielded

and w i l l be provided with maintenance a ids such as handbooks and diagnostic

t o o l s . A f u l l se t of appl ica t ion programs w i l l be prepared. The computer

w i l l be c e r t i f i e d f o r e x p e r i m e n t a l a i r c r a f t i n s t a l l a t i o n . Our o b j e c t i v e

w i l l b e t h a t t h e f l i g h t model w i l l d i f f e r f rom the p ro to type to on ly a

l imi ted degree , and as such can be regarded as an evolut ion f rom it.

This view i s j u s t i f i e d by t h e f a c t t h a t t h e SIFT concep t a l l ows fo r t he

use o f o f f - the - she l f un i t s fo r t he p rocesso r s and memor ie s . We can fore-

see changes between the prototype and the f l ight model in the bus sys tem,

the input /output sys tem, and the sca le o f the sys tem as a whole and, in

addi t ion , cer ta in t echnology changes ment ioned in the d i scuss ion of the

e v o l u t i o n o f t h e p r o t o t y p e i t s e l f .

3. J u s t i f i c a t i o n o f t h e p l a n

The proposed plan departs f rom convent ional practice i n two major

r e s p e c t s . F i r s t , f o r m a l s y s t e m s p e c i f i c a t i o n (S t a g e 1) i s a much l a r g e r

e f f o r t i n t h e p l a n t h a n i n c o n v e n t i o n a l p r a c t i c e , w h i c h t y p i c a l l y s p e c i f i e s

a sys t em d i scu r s ive ly . Our s p e c i f i c a t i o n method i s a c t u a l l y a very h igh-

level form of programming that not only i s p r e c i s e (t o some level of ab-

s t r a c t i o n) , b u t a l s o p r o v i d e s a c a p s u l e i n t u i t i v e view of the system.

14

The second depar ture i s t h a t t h e p l a n d o e s n o t i n c l u d e a major

component f o r t e s t i n g , e i t h e r by computer s imulat ion or breadboarding.

We b e l i e v e t h i s o m i s s i o n i s j u s t i f i e d b e c a u s e w e b e l i e v e t h a t t h e s p e c i -

f icat ion and proof methodology we are employing w i l l leave ve ry few des ign

ques t ions unanswered , w i th t he excep t ion o f ce r t a in non log ica l e l emen t s

such as power supply and packaging (we p l a n t o a l l o w as much t e s t i n g f o r

t h e s e aspects as good eng inee r ing practice r e q u i r e s) . E x t e n s i v e t e s t i n g

wou ld t hus cons t i t u t e a w a s t e f u l d i v e r s i o n o f time and money. Moreover,

w e do n o t see t h e n e e d f o r s i g n i f i c a n t i n c o r p o r a t i o n o f i n n o v a t i v e h a r d -

ware technologies which would need to be t es ted in a breadboard vers ion

of the system.

L e t u s cons ide r t he u sua l a rgumen t s i n f avor o f t e s t ing , and t he

r easons why w e reject them.

The u s u a l r o l e o f tests i s t o h e l p d e s i g n e r s see j u s t what

behavior i s produced by the thing they have created. This purpose i s

obviated by our specif icat ion methodology.

Ano the r a rgumen t o f t en t ende red i n f avor o f t e s t ing i s t h a t t h e

s p e c i f i c a t i o n s may themse lves be de f i c i en t , and t ha t i n t he cou r se o f

p repa r ing tests, i n d i v i d u a l s w i l l th ink of input condi t ions and sequences

t h a t may have been overlooked by the designers . The i s s u e i s how t o v a l i -

d a t e o r c o n f i r m a designer 's understanding of the system problem. We

b e l i e v e t h a t t e s t i n g may be a weak tool for ach iev ing th i s purpose , and

t h a t g i v e n t h e p r e s e n t c o s t a n d power o f t e s t i n g , o t h e r more human-

oriented methods would be more effective. Such methods include:

(1) Good means fo r exp res s ing , r eco rd ing and d i sp l ay ing t he
design and i t s documentation.

(2) Ca re fu l des ign review methods, such as redundant design
teams and "walk-through" (discussion of a des ign w i th an
o u t s i d e r) .

It i s f o r t h i s r e a s o n t h a t w e propose a des ign review a t the end

o f S t ep 2, i.e., before procurement of prototype equipment and sof tware.

Y e t a n o t h e r a r g u m e n t f o r t e s t i n g i s t h a t it can expose assump-

t i o n s made about p r imi tve sys tem func t ions . For example , the a r i thmet ic

o p e r a t i o n s o f a p a r t i c u l a r p r o c e s s o r may not suppor t the computa t iona l

15

methods assumed by the application programer--or even the-claims of the

programming manual. This is indeed a significant issue. Computer simu-

lation will, in general, not be useful to solve this problem. We are

optimistic however that the problem can be deferred to the prototype stage

(Stage 3) without creating the need for major redesign.

The final argument for testing or simulation is that formal

validation methods cannot, in their present state of development, inform

the designer about execution speeds. Such information may be necessary

in order to set performance specifications for components, such as bus or

memory bandwidth and processor cycle-time. We believe that such informa-

tion can be obtained as needed by special analyses, including the use of

computerized models. Such models would be much simpler and easier to

create and use than general system simulations, emulations, or breadboards.

Fortunately, the SIFT distributed-computer design places very mild perfor-

mance requirements on system components for the chosen application domain,

so we believe that extensive performance analyses will not be needed.

Some further remarks about the prototype are necessary. A s

described, the prototype will have essentially the same logic and use the

same device types as the flight model. The two will differ mainly in size,

completeness of program set, interconnection techniques, packaging, physi-

cal hardening, and the like. It might be argued that the design issues

involved in these various qualities might be resolved without the necessity

of building an operating prototype. It is perhaps too early in the course
of the design to be certain about this issue; however, the justification

for a separate prototype does not rest on its support of the design studies

implied by the differences listed.

Despite our confidence in the prospect for validation of SIFT

functional design, there are many nonlogical issues that may contain hid-

den implications on some aspects of the system logic. These issues in-

clude transient fault effects, accessibility and controllability for

diagnosis, and postspecification shortcomings in device performance.

16

It would be d e s i r a b l e t o u n c o v e r t h e s e " s u r p r i s e s " as e a r l y as

poss ib le . There i s t h e r e f o r e a case for in t roducing phys ica l parameters

i n to t he des ign o f t he p ro to type a s ea r ly as poss ib l e .

To summarize, our view is t h a t t h e i s s u e s t h a t are t y p i c a l l y

reso lved by s imulat ion and breadboard models can be delayed to the s tage

o f p r o t o t y p e t e s t i n g b e c a u s e o f t h e i n h e r e n t f l e x i b i l i t y o f t h e SIFT

concept .

C . Recommendations

We see the development of the SIFT concept as a s e r i e s o f f i v e s teps

t h a t c a n b e b r i e f l y c h a r a c t e r i z e d as fo l lows:

(1) C r i t i c a l aspects o f t h e d e s i g n (c u r r e n t c o n t r a c t)

(2) Complete design of a SIFT sys t em (ex tens ion t o cu r ren t con t r ac t)

(3) Bui ld ing of a prototype of SIFT

(4) P r o t o t y p e t e s t i n g and procurement of a f l y a b l e model of SIFT

(5) F l i g h t t e s t and eva lua t ion .

The r e m a i n d e r o f t h i s s e c t i o n d e t a i l s t h e a b o v e s teps and def ines

the work t o be accomplished in them. The involvement o f d i f fe ren t o rgani -

z a t i o n s (SRI, NASA, a i r f rame manufac turers , a i r l ines , semiconductor manu-

f a c t u r e r s , e t c .) i n t h e work i s a l s o d i s c u s s e d .

The t echn ica l p l an i s shown g r a p h i c a l l y i n F i g u r e 111-1, with major

groupings o f expec ted resu l t s o f the p resent cont rac t under S t e p 1 (e .g . ,

Hardware Design). The p l an shows t h e work s teps up t o t h e l a t t e r p a r t o f

1976 i n d e t a i l (w i t h e a c h item be ing de f ined i n Sec t ion C2), and less

d e t a i l f o r t h e s t e p s beyond the end of 1976.

A s can be seen f rom the char t , i t i s our view and recommendation

t h a t a f l y a b l e model of the SIFT computer can and should be implemented

approximately in 1979. A l l of the preceding tasks have been designed

w i t h t h a t g o a l i n mind. The exac t phas ing of the many tasks can be a

matter o f nego t i a t ion , bu t t he r e l a t ive phas ing i s cons idered to be

as i n d i c a t e d by t h e a r r o w s i n t h e c h a r t .

17

We f o r e s e e t ha t the tasks to be accompl ished i n S t e p 2 w i l l r e q u i r e

a l e v e l o f e f f o r t s l i g h t l y h i g h e r than tha t o f the e x i s t i n g c o n t r a c t .

T h i s w i l l be augmented with cooperation from many industry segments, such

as a i r l i n e s and semiconductor manufacturers. We show t h e p o i n t a t which

t h i s c o o p e r a t i o n b e g i n s i n S t e p 2, bu t con t inu ing coope ra t ion i s impl ied

i n t h e l a t e r s t e p s , t h o u g h t h i s l a t e r coope ra t ion i s n o t s p e c i f i c a l l y

ind ica t ed on t he cha r t . Dur ing t he l a te r p h a s e s , t h i s c o o p e r a t i o n w i l l

have to become o n e o f a c t i v e p a r t i c i p a t i o n as equipment i s procured and

the prototype and the f lyable model are p h y s i c a l l y t e s t e d . We see t h a t

t h e t o t a l l e v e l o f e f f o r t i n S t e p s 3 , 4 , and 5 w i l l b e s i g n i f i c a n t l y

h ighe r t han a t p re sen t and t ha t i t w i l l be spread over many o rgan iza t ions .

The exact d e t a i l s o f t h e t a s k s t o b e p e r f o r m e d i n t h e s e l a t e r s t e p s are

t h e s u b j e c t o f t h e p r o c u r e m e n t p l a n t h a t w i l l be prepared under Step 2,

a t which time w e e x p e c t t o b e a b l e t o d e t a i l t h e l a t e r s t e p s so t h a t a

complete determinat ion can be made o f t h e r e q u i r e d f u n d i n g f o r t h e re-

mainder o f the program.

We c o n s i d e r t h a t t h e m a j o r e f f o r t o f S t e p 2 should be carried out by

SRI, wi th ac t ive d i scuss ion by indus t ry and o ther research segments . This

combined p a r t i c i p a t i o n w i l l e n a b l e t h e e f f o r t t o p r o c e e d w i t h c o n t i n u i t y

o f p e r s o n n e l , w i t h t h e a d v a n t a g e o f m a i n t a i n i n g t h e e x i s t i n g c a p a b i l i t y

and enthusiasm, while a t t h e same time widening the community o f t hose

who are i n v o l v e d i n t h e t o t a l e f f o r t .

The p a r t i c i p a t i o n o f o the r i ndus t ry s egmen t s i n S t eps 3 t o 5 i s

e x p e c t e d t o i n c r e a s e v e r y s i g n i f i c a n t l y . We see t h a t t h e m a j o r r o l e t h a t

S R I s h o u l d p l a y i n t h e s e l a t e r s t eps i s one of t echnica l l eadersh ip and

coord ina t ion , as well as be ing t he r e sea rch arm o f t h e t o t a l e f f o r t i n -

r e s o l v i n g i s s u e s tha t are a t present unforeseen bu t become known as work

proceeds . In addi t ion , w e see t h a t t h e s c o p e o f t h e t o t a l e f f o r t may be

changed with changing circumstances, causing a need t o c a r r y o u t r e s e a r c h

t h a t i s beyond the scope of that which i s c u r r e n t l y e n v i s i o n e d ,

1. Step 1 - Current Cont rac t

The c u r r e n t c o n t r a c t c a l l s f o r SRI t o d e s i g n and ana lyze a l l

c r i t i c a l aspec ts of SIFT. The following i t e m s are i n c l u d e d i n t h i s e f f o r t :

(1) General system requirements

(2) The d e f i n i t i o n a n d c o n c e p t u a l d e s i g n o f SIFT

(a) Bus and processor memory b u s i n t e r f a c e

(b) Processor

(c) Memory

(d) I n p u t / o u t p u t i n t e r f a c e

(e) Software

(i) Executive program

(i i) Sample appl icat ion program

(3) Analysis and assessment of SIFT

(a) Thoroughness o f fau l t ana lys i s

(b) P roof o f f au l t - to l e rance p rocedures

(c) Modeling

(4) T e c h n i c a l p l a n f o r f u r t h e r SIFT development (t h i s document)

(5) Reporting and documentation.

SRI has cu r ren t ly comple t ed abou t 70% o f t h i s r e s e a r c h , w i t h

e v e r y i n d i c a t i o n t h a t the o b j e c t i v e s w i l l be m e t . Very few new and

s ignif icant problems have been uncovered. The o n l y o n e o f g r e a t s i g n i f i -

cance i s t h e matter of massive t r a n s i e n t s i n t h e e v e n t o f severe envi ron-

menta l d i s t rubances , e .g . , a l i g h t n i n g s t r i k e on t h e a i r c r a f t . The tech-

n i c a l p l a n f o r S t e p 2 as p r e s e n t e d b e l o w d e s c r i b e s t h e a c t i o n s t h a t are

p roposed fo r dea l ing w i th t h i s p rob lem (see d and h under Step 2,

fol lowing.

2. Step 2 - Complete design of SIFT

T h i s s u b s e c t i o n d e f i n e s t h e t a s k s t h a t c o n s t i t u t e S t e p 2 i n t h e

t echn ica l p l an . Each ma jo r t a sk o r g roup of t a s k s i s s e p a r a t e l y d e f i n e d

i n t h e s e c t i o n s a through j.

a. General - The o v e r a l l g o a l i s t o s p e c i f y f u l l y a represen-

t a t ive SIFT system to a l e v e l o f d e t a i l s a t i s f a c t o r y f o r p r o c u r e m e n t o f

a l l hardware and software components. The p a r t i c u l a r c o n f i g u r a t i o n o f

19

SIFT t h a t w i l l be chosen fo r t h i s pu rpose w i l l b e a p p r o p r i a t e f o r c a r r y -

i n g o u t a reasonable set o f a i r c r a f t a p p l i c a t i o n t a s k s c h o s e n a f t e r c o n -

s u l t a t i o n w i t h b o t h a i r l i n e s and a i r f rame manufac turers . Throughout th i s

s t u d y , c l o s e c o n t a c t w i l l be maintained with both semiconductor and avi-

on ic s manufac tu re t s so as t o p r o v i d e a n e f f i c i e n t i n v o l v e m e n t o f them i n

the bu i ld ing o f a p r o t o t y p e t o b e c a r r i e d o u t i n S t e p 3 of t h i s program.

b. Applicat ion Tasks - F i r s t implementat ion of the SIFT system

should inc lude on ly a subse t o f t he t o t a l on -boa rd da t a p rocess ing sys t em

t h a t i s p r o j e c t e d f o r j e t t r a n s p o r t s o f t h e 1980-1985 per iod . This w i l l

make much more e c o n o m i c a l t h e t a s k o f r e a l i s t i c e v a l u a t i o n o f t h e f a u l t -

t o l e r a n t t e c h n i q u e s and procedures that are to be i nco rpora t ed .

One o b j e c t i v e w i l l be t h e s e l e c t i o n o f t h o s e a p p l i c a t i o n

t a sks t ha t can mos t r ead i ly and e f f e c t i v e l y be i n c o r p o r a t e d i n t o t h e p r o t o -

type system. The s u b s e t o f t a s k s must be adequate and suf f ic ien t ly var ied

to p rovide meaningfu l tes t r e su l t s f o r a n a l y s i s . I n a d d i t i o n , t h e s y s t e m

must be planned to meet the constraints imposed by ope ra t iona l , economic,

and procurement factors. The a p p l i c a t i o n t a s k s e l e c t i o n m u s t t h e r e f o r e

b e b a s e d i n p a r t upon the recommendations, facil i t ies, and equipment pro-

v ided by var ious segments of the a i r l ine and data processing communit ies .

Among t h o s e t o b e c o n s u l t e d i n t h e t a s k s e l e c t i o n are the fo l lowing:

a Air l ines - -As cu r ren t ly v i sua l i zed , coope ra t ion o f one
o r more a i r l i n e s w i l l be sought t o p r o v i d e a commercial
a i r l i n e e n v i r o n m e n t t o e n a b l e g e n e r a t i o n o f a t r u e
o p e r a t i o n a l i n t e r p r e t a t i o n o f s y s t e m t e s t r e s u l t s .
C l o s e l i a i s o n s h o u l d be e s t a b l i s h e d w i t h a i r l i n e p e r -
sonnel a t a n e a r l y d a t e . O p e r a t i o n a l and economic
a s p e c t s o f t h e o p e r a t i o n s o f t h e a i r l i n e (s) w i l l most
p robab ly impose l imi t a t ions on t he func t ions t ha t can
i n a p rac t i ca l s ense be i nco rpora t ed i n to a pro to type
tes t sytem.

0 Research and development agencies--Throughout the p a s t
few yea r s , a cons ide rab le amount of e f f o r t h a s b e e n
directed toward the design and tes t o f d i g i t a l s y s t e m s
f o r c e r t a i n a i r c r a f t c o n t r o l and r e l a t e d f u n c t i o n s .
Agencies and companies such as NASA, t h e U.S. Air Force,
and Boeing have been a t t h e f o r e f r o n t of such programs.
L ia i son w i l l b e e s t a b l i s h e d w i t h s u c h o r g a n i z a t i o n s i n
o r d e r t o e x p l o i t t h e r e s u l t s o f t h o s e e f f o r t s .

20

". . . .

ARINC--It will be desirable to specify the prototype
system to be consistent with existing and projected
standards insofar as feasible, provided that the basic
goals of the project are not jeopardized. Accordingly,
direct contact will be made with agencies such as ARINC
(Airline Radio, Inc.) to achieve the desired measure
of system standardization and compatibility.

c. Hardware Design - A complete specification of all hardware

components of a SIFT system will be prepared to a level of detail suffi-
cient for procurement of a prototype from commercial vendors. The speci-

fications must include all aspects including:

Functional capability
Size, speed, and performance parameters

Reliability constraints
Interface specifications

0 Packaging constraints

To provide assurance that the specified system can be im-
plemented effectively and economically within the projected time frame,

contact will be established with vendors of computers, data communication

equipment, interfacing hardware, and semiconductor products. In some
cases, standard prodact lines can possibly be modified slightly to accomo-

date the requirements of the prototype system. For example, data com-

munication elements will be modified to be compatible with the specified
bus structure of the prototype system. Liaison will be established with
appropriate departments of such organizations to facilitate specification

of any such modifications that may prove to be necessary.

d. Software Design - The software of the SIFT will be fully
specified. For the system software (Global and Local executives), the

formal specifications prepared under the current contract will be aug-
mented to the level of detail that can be used for procurement. This
will involve preparing sample implementation schemes and providing firm

estimates of those variables in the system that are currently pararneter-

ized in the formal specifications.

2 1

The set of application tasks (item 2b) will be specified

in a similar manner to the system software.

The specifications will include full details of acceptance

tests to be used for evaluation. The use of programing languages at

different levels will be specified. Any special measures to be taken to

assist in validation of the software will be specified.

Techniques should be investigated for providing a scheme

for achieving fault-tolerant application software. Such studies should

include consideration of the concept of "Recovery Blocks" as developed

at the University of Newcastle, England, or derivatives of it specially

adapted to the SIFT concept.

e. Aircraft Interface - The SIFT system will require digital
data transmission from a multiplicity of instruments, sensors, radio-

frequency units, and other peripheral input units, and transmission to a

multiplicity of actuators and display units. One of the tasks will there-

fore be to specify the total data communication system. Some of the sa-

lient factors to be considered are as follows:

0 The basic system--Various techniques for accessing and
transmitting the data are possible. For example, a
fully buffered system could be devised, or a simple
polling system can be implemented at less cost in hard-
ware but at greater cost in time requirements.

A third alternative would be to provide an interrupt
system whereby the individual data source notifies the
computer via an interrupt that new data are available.

Requirements, advantages, and tradeoffs of each of the
candidate data communication techniques will be con-
sidered and recommendations made for each input and
output variable.

0 Protocol--For each data communication technique to be
used, specific procedures will be established for proper
control of the individual communication function.

0 Synchronization--For some of the prototype system
functions, relatively noncritical "macrosynchronization"
among the various types of units and among replicated
units of a given type will suffice for proper system
operation. In general, synchronization of this type
can be accomplished by proper polling sequences and

22

the like. However, there may be some functions for
which time synchronization will be more critical, and
for which special synchronization must be provided.
This possibility will be given special attention.

0 Data validity--For a high reliability system, accuracy
of data transmission will be extremely critical. The
basic data communication system will therefore neces-
sarily include data verification as a major considera-
tion. Use of various techniques such as parity, hash
totals, and check digits will be considered in the
system specification.

0 Data transmission noise--In computer installations such
as those in aircraft where various system elements are
widely separated, and where (electronic) data pulse
fronts are relatively sharp, grounding problems some-
times lead to generation of "noise" pulses on the data
lines that can cause errors in reception of the data.
In addition, errors can be caused by such phenomena as
lightning strikes on the aircraft and the consequent
induced signals on the data lines. Potential problems
of this type will be discussed with airline, research,
and vendor personnel, so that system specifications can
be prepared with a high assurance that problems of this
type can be circumvented. It is possible that optical
data transmission via glass or plastic fiber lines may
prove to be satisfactory as a technique for interunit
transmission for some or all of the data in the on-board
system.

f. Maintenance Aspects - Ideally, any system--electronic or
mechanical--would throughout its full life be free of any faults that

would require either preventive (scheduled) or fault-forced (immediate)

maintenance. The architecture of the SIFT system precludes the need for

the latter type. It is necessary to consider scheduled maintenance pro-
cedures that do not include extensive disconnection of system components,

probing of circuit boards with oscilloscopes and voltmeter probes, etc.
Airline experience has consistently indicated that additional system

faults are often caused by such well-intentioned but fault-prone proce-

dures themselves. Rather, SRI considers that the scheduled maintenance

should be a preflight "test and verification" (T/V) procedure, whereby
the various system modules are exercised automatically, e.g., via

23

prestored programs, and either approved as valid (verified), or flagged
as faulty. In the latter case, at least some minimal method of auto-
matic diagnosis should be incorporated to designate, via printout or

display, the faulty module so that it can be replaced with a minimum of

effort and time.

*

The economic effect of different maintenance policies on

airline operations should be considered. Analyses should be carried out

to determine the conditions under which different maintenance policies

are advisable; for example, one policy may be appropriate for a short-

haul use while a different policy may be appropriate for long-haul use.

g. Reliability Analyses - As the design of the SIFT system

becomes defined in progressively more detail, it is necessary that the

reliability analyses carried out on the current contract be updated. As

new data becomes available on fault statistics, it will be necessary to

examine their effect on system reliability and in particular to determine

if changes are therefore required in the design. The reliability analyses

carried out under the existing contract will have to be extended to in-

clude consideration of the various input/output units, including the sen-

sors and actuators of the aircraft. The analyses will also be extended

to take into account all the different fault-tolerance procedures that

are possible within the general framework of the SIFT concept.

h. Transient Behavior - As with fault-tolerant computer de-
signs, a cause for concern is the possibility of a massive transient t

*
Current plans are to incorporate, in a background mode, continuous test-
ing of this type for all processor modules during real-time flight
operations. It is further suggested that the status of each processor
be indicated on the flight deck in some simple manner such as (1) green
light--processor operation valid; (2) amber light--monetary (transient)
fault detected; or (3) red light--processor outputs blocked from the
system because of continuing faults.

Such transients are typically caused either by lightning strikes or by
other disturbances of the electrical system of the aircraft.

t

24

that causes multiple faults and perhaps multiple errors in the system.

The approach to be used in dealing with this possibility consists of

three parts.

First, it is necessary to collect data relevant to the

problem of transients. Airlines and airframe manufacturers have signifi-

cant data relating to this matter. Tests have been made on aerospace
computers at NASA Houston and other sites. Other experiments at SRI and

elsewhere have examined the effect of large electromagnetic fields on

electronic equipment. It is hoped that these data plus consultation
with experts in this field will enable an estimate to be made of the

effects of such phenomena on an aircraft computer. Some tests may need

to be carried out to answer specific questions on this issue.

Second, schemes must be developed to reduce the probability

of such massive transients in the system. Such schemes must include as-
pects of shielding, improved grounding systems and, as just mentioned,
the use of optical data links for the larger path-lengths external to

the computer system itself.

Third, within the SIFT system, techniques must be developed

for recovery from such transients. This may involve software techniques

such as an automatic restart capability, and/or hardware techniques such

as the provision of a highly protected, nonvolatile back-up memory to
store critical state variables to assist recovery after a transient.

Recovery speed requirements for these variables may require a special

memory in addition to the general system back-up memory.

i. Diagnosis - The viability of the error detection and re-
covery strategies in SIFT relies on the freedom from faults of most of

the SIFT units that are performing computations. Assuming a majority-

vote strategy, there are double failures that cannot be tolerated. At

the beginning of a flight, it is essential that all units, or possibly

all units except one, are fault-free. We do not advocate the use of
special test equipment to accomplish preflight checkout of the computer.
In'stead, the checkout is to be carried out by executing special diagnosing

programs that flex the various system units, e.g., processors, memori.es,

25

busses , 1/0 processo r s . Dur ing t he p re sen t yea r ' s r e sea rch , w e a l s o

i d e n t i f i e d t h e n e e d t o c a r r y o u t p e r i o d i c , i n f l i g h t , d i a g n o s i s o f t h e

h a r d w a r e u n i t s t h a t are not f lexed dur ing normal computa t ion . This per i -

o d i c d i a g n o s i s r e d u c e s t h e p r o b a b i l i t y o f m u l t i p l e f a u l t s r e m a i n i n g un-

d e t e c t e d .

There has been ex tens ive work on log ic c i rcu i t d iagnos is ,

from both a t h e o r e t i c a l and a p r a c t i c a l v i e w p o i n t . Much o f t h e p r a c t i c a l

work has been ca r r i ed ou t by the semiconductor manufacturers toward tes t ing

LSI c h i p s as they emerge from production. This work i s no t adequa te fo r

our purposes since i t r e l i e s on special t e s t equ ipmen t (s igna l gene ra to r s ,

p robes , o sc i l l o scopes) and s ince i t does not guarantee complete coverage.

The t h e o r e t i c a l work has been concerned wi th developing d iagnos ing se-

q u e n c e s t h a t i f a p p l i e d t o a c i r c u i t w i l l d e t e r m i n e i f i t i s f a u l t y .

T h i s work i s a t t r ac t ive f rom our v iewpoin t s ince i t re l ies on t h e c i r c u i t

i n t e r f a c e s o n l y . (The Computer Science Group of SRI has done ex tens ive

work i n t h i s area under commercial and NASA-ERC sponsorsh ip) . However,

t h e t h e o r e t i c a l work i s not adequate s ince i t t y p i c a l l y a s s u m e s t h a t t h e

o n l y f a u l t mechanism i s a g a t e b e i n g s t u c k a t z e r o o r s t u c k a t one. It

i s known t h a t LSI c i r c u i t s e x h i b i t a f a i lu re behav io r wh ich i s s i g n i f i -

c a n t l y more complex.

Our approach w i l l f i r s t i n v o l v e t e c h n i c a l d i s c u s s i o n s w i t h

s e m i c o n d u c t o r m a n u f a c t u r e s t o d e t e r m i n e t h e a c t u a l f a i l u r e b e h a v i o r . P r e -

l i m i n a r y d i s c u s s i o n s h a v e i n d i c a t e d t h a t t h e f o l l o w i n g f a i lu re behavior

can be expected:

A l l t y p e s o f s i n g l e g a t e f a i l u r e s , i n c l u d i n g i n p u t -
ou tput shor t s , open-outputs , e tc .

e Shor ts be tween cont iguous ga tes on a c h i p . T h i s f a u l t
assumption precludes the development of test sequences
t h a t are b a s e d e n t i r e l y on the log ic d iagram.

0 F a i l u r e s t h a t o c c u r o n l y u n d e r maximal g a t e l o a d i n g
c o n d i t i o n s . T h i s f a u l t seems t o b e m a n i f e s t e d as
i n p u t g a t e f a i l u r e s f o r some of t h e g a t e s d r i v e n by
t h e f a i l e d g a t e .

A f t e r i d e n t i f y i n g t h e f a i l u r e b e h a v i o r w e w i l l s t u d y t h e

development of the sequences that w i l l r e v e a l t h e o c c u r r e n c e o f t h e

26

expec ted f a i lu re s . Dur ing S t ep 2, w e i n t e n d t o d e v e l o p a p p r o p r i a t e t e c h -

n iques ; the wr i t ing o f ac tua l d iagnos ing programs must await the p rocure-

ment o f h a r d w a r e i n S t e p 3 .

j. Procurement Plan - D e t a i l e d p l a n s w i l l be drawn up f o r t h e

t a s k s t o b e a c c o m p l i s h e d i n S t e p s 3 t o 5. These plans w i l l i n c o r p o r a t e

f o r e a c h t a s k t h e f o l l o w i n g items:

e The s p e c i f i c a t i o n o f work to be accompl ished

e The es t imated time t o a c c o m p l i s h t h e work

e The e s t i m a t e d c o s t o f c a r r y i n g o u t t h e work

e The q u a l i f i c a t i o n s r e q u i r e d o f o r g a n i z a t i o n s t h a t c o u l d
c a r r y o u t t h e work

e C o n d i t i o n s o f d e l i v e r y a n d a c c e p t a n c e c r i t e r i a

e A t e n t a t i v e l i s t o f c a n d i d a t e o r g a n i z a t i o n s t o c a r r y
o u t t h e work.

The procurement plan w i l l a l s o d e f i n e t h e i n t e r a c t i o n

b e t w e e n t h e s e p a r a t e t a s k s . I n p a r t i c u l a r , i t w i l l i d e n t i f y t h e c r i t i c a l

pa th(s) in the deve lopment and the manner in which the p rocurement p lan

i s i n t e n d e d t o p r o t e c t t h e p l a n as a whole from being jeopardized by

f a i l u r e t o c a r r y o u t a n y p a r t i c u l a r t a s k .

The plan w i l l cons ider methods tha t are p o s s i b l e f o r

c o n t r a c t i n g t h i s work, for example , the use o f subcont rac t ing or the

i s s u i n g o f i n d e p e n d e n t c o n t r a c t s . The o v e r a l l management of the deve lop-

ment w i l l be considered and recommendations made as t o t h e way i n which

t h e s e p a r a t e e f f o r t s w i l l be coord ina ted .

3. Desipn Review

Between Step 2 and Step 3 w e a n t i c i p a t e a des ign rev iew. This

w i l l be c a r r i e d o u t b y NASA p e r s o n n e l o r t h e i r r e p r e s e n t a t i v e s i n consul-

t a t i o n w i t h t h e SRI d e s i g n team. The pu rpose o f t h i s review i s t o re-

examine the des ign f rom the po in t o f view of comple teness and cor rec tness

and t o check i t s a p p r o p r i a t e n e s s f o r t h e a p p l i c a t i o n set f o r which i t i s

intended. A t t h i s p o i n t , i t w i l l a l s o b e p o s s i b l e t o review t h e v a r i o u s

e s t i m a t e s t o timescale and funding tha t w i l l have been prepared i n t h e

27

procurement plan in Step 2. Heavy involvement with airlines, airframe

manufacturers, and avionics manufacturers will be desirable in this review.

4 . Step 3

There are three major objectives of Step 3 : hardware procure-

ment and integration, software procurement apd integration, and the de-

velopment of a test facility. It is recommended that SRI continue to

play a central role in this development step but that the major develop-

ment of hardware and software be carried by organizations specializing

in those fields. This way of organizing the development of a prototype

has been used extensively by SRI with great success. In one case, we

have carried out the role of system integrators for a mobile digital

packet radio network, with radio and computing equipment being supplied

by vendors in those fields. In another case, SRI is the system inte-

grator in the development of a blind landing system for FAA. The design

of SIFT greatly facilitates this kind of operation in that there is a

high degree of functional independence among the various units of either

hardware or software. It is thus relatively easy to specify individual
procurements, with the final integration to be carried out after delivery.

Our design methodology for preparing formal specifications and for de-

fining the functional hierarchy of the system also makes independent pro-

curement of parts of the system a practical strategy.

The integration of the various parts will involve the building

of limited amounts of special hardware (e.g., the bus system), and also

the writing of limited amounts of programs (e.g., the programs used for

prototype tests),

a. Hardware Procurement - It is planned that as part of Step 2

we will have already determined those organizations that are qualified to

act as suppliers of the processors and memories, which represent the major

hardware components of the system. It will be necessary in Step 3 to pre-

pare formal requests for bid from these organizations for each of the
hardware units. Following evaluations of these bids, purchase orders or

development contracts will be drawn up for procurement of equipment.

28

We a n t i c i p a t e t h a t t h e s e a c t i o n s w i l l h a v e b e e n t a k e n i n t h e f i r s t few

months of Step 3 , t hus enab l ing t he even tua l p rocuremen t t o be completed

a f t e r 9 months in to S tep 3 . The remaining 3 months of Step 3 w i l l be

devoted to the in tegra t ion of the hardware . This w i l l b e g r e a t l y f a c i l i -

t a t e d by the p r ior deve lopment o f the spec ia l hardware tha t i s necessary

f o r i n t e g r a t i n g t h e w h o l e s y s t e m . I n p r o c u r i n g t h e m a j o r u n i t s o f h a r d -

ware, i t i s a n t i c i p a t e d t h a t , t o a l a rge ex ten t , s t anda rd o f f - the - she l f

un i t s can be u sed w i th ve ry minor mod i f i ca t ions . We a n t i c i p a t e t h a t many

s u p p l i e r s may be involved; for example, i t may b e d e s i r a b l e t o p r o c u r e

main processors from an avionics computer manufacturer and inpu t /ou tpu t

processors f rom an LSI microprocessor manufacturer .

A s t he p ro to type evo lves , t he re w i l l need to be continuing

e f f o r t , p r i m a r i l y c o n c e r n e d w i t h t h e d e t a i l s o f t h e c i r c u i t technology

t h a t i.s used bu t a l so involv ing ques t ions o f packaging and in te rconnec-

t i o n . We e x p e c t t h a t t h e f i r s t v e r s i o n o f t h e p r o t o t y p e w i l l use con-

v e n t i o n a l t e c h n o l o g i e s i n t h e s e u n i t s b u t w i l l e v o l v e t o become ve ry

s i m i l a r t o t h e e v e n t u a l f l i g h t model t h a t i s p lanned in S tep 4.

b. Software Procurement - The major software procurememt can

be broken down i n t o two pa r t s , sys t em so f tware and app l i ca t ion so f tware .

The system sof tware w i l l h a v e b e e n f u l l y s p e c i f i e d i n S t e p s 1 and 2 and

can be l e t o u t f o r b i d u s i n g t h e s e s p e c i f i c a t i o n s . The a p p l i c a t i o n s

sof tware w i l l be s p e c i a l i z e d t o t h e p a r t i c u l a r a i r c r a f t f u n c t i o n s t h a t

are de termined in S t e p 2 and w i l l be g r e a t l y i n f l u e n c e d by the type o f

a i r c r a f t t h a t i s t o be t h e e v e n t u a l tes t veh ic l e . Cons ide rab le ga in may

be had by procuring the application software from the same o r g a n i z a t i o n

t h a t i s se lec ted to supply the major hardware components , par t icu lar ly i f

t h e l a t t e r i s an av ionics manufac turer .

We see tha t t he o rgan iz ing o f t he so f tware p rocuremen t can

b e a c h i e v e d i n t h e f i r s t 3 months of S t e p 3, p a r t i c u l a r l y when w e t ake

in to accoun t t he p re l imina ry ac t ions t ha t w i l l have been taken in develop-

ing the procurement plan of Step 2, f o r example , the p r ior se lec t ion of

o n e o r more c a n d i d a t e o r g a n i z a t i o n s t o a c c o m p l i s h t h e n e c e s s a r y work. It

is expec ted tha t the ac tua l p rocurement o f the sof tware w i l l be p o s s i b l e

29

i n a pe r iod o f 6 months, with t h e f i n a l 3 months of Step 3 d e v o t e d t o t h e

i n t e g r a t i o n o f t h e several components software.

c. Development o f a T e s t F a c i l i t y - I n t e s t i n g t h e p r o t o t y p e

(Step 4 below) it w i l l be necessa ry t o p rov ide an adequa te test envi ron-

ment. This involved two major components , the connect ion of the proto-

t ype t o s imu la t ed i npu t and ou tpu t un i t s and t he gene ra t ion o f app ropr i a t e

tes t d a t a . We f o r e s e e t h e s e t t i n g up o f a t e s t g e n e r a t i o n f a c i l i t y b a s e d

upon a genera l -purpose computer su i tab ly programmed t o g e n e r a t e t h e

a p p r o p r i a t e tes t s i g n a l s .

d . F l i g h t Model Packaging - A l s o t o b e i n c l u d e d i n S t e p 3 i s

the deve lopment o f packaging techniques for the f l igh t model . In t h i s

t a s k w e would expect tha t the exper ience o f av ionics equipment manufac-

t u r e r s wou ld be d i r ec t ly app l i cab le , and i n such case w e a n t i c i p a t e t h a t

t h i s t a s k would be a r e l a t i v e l y small e f f o r t . The ma jo r nove l ty t o be

inco rpora t ed i s t h e p r o v i s i o n f o r p r o t e c t i o n a g a i n s t t h e e f f e c t s o f elec-

t romagne t i c d i s tu rbances . We a l s o see t h e p o s s i b i l i t y of some problems

i n i n c o r p o r a t i n g o p t i c a l c o u p l i n g b e t w e e n u n i t s w h i l e m a i n t a i n i n g t h e

i n t e g r i t y o f a n y r e q u i r e d s h i e l d i n g .

5 . Steps 4 and 5

The major a c t i v i t i e s of S teps 4 and 5 are t h e t e s t i n g o f t h e -
pro to type and t he bu i ld ing and t e s t ing o f t he f l i gh t mode l . The t a s k s

t o b e a c c o m p l i s h e d i n t h e s e s t e p s are shown i n t h e accompanying c h a r t .

A s s t a t e d p r e v i o u s l y , w e see t h a t t h e f l i g h t model should be an evolut ion

from t h e p r o t o t y p e r a t h e r t h a n a completely new des ign .

We a n t i c i p a t e t h a t t h e t e c h n o l o g y o f t h e f l i g h t model w i l l be

v e r y c l o s e l y r e l a t e d t o t h e p r o t o t y p e . One scheme would be t o u s e a

set of processors and memories from a minicomputer manufacturer, which

i n t h e p r o t o t y p e would be cons t ruc ted us ing convent iona l c i rcu i t board

techniques , and to use a rugged ized ve r s ion o f t he same hardware i n t h e

f l i g h t model. This scheme i s v e r y a t t rac t ive i n t h a t much of the sup-

p o r t i v e d e s i g n work would no t be changed i n go ing f rom the p ro to type t o

30

t h e f l i g h t model. It would inc lude the des ign of spec ia l equipment

(busses , i n t e r f aces , e t c .) , t he so f tware sys t em (execu t ive and app l i ca t ion

p rograms) , and t he t e s t p rocedures and f ac i l i t i e s have been des igned fo r

t he p ro to type .

The approach suggested above might preclude the use of advanced

technology components such as LSI c i r c u i t r y , b u t t h i s i s considered a

small r i s k i n view of two f a c t o r s :

It i s u n l i k e l y t h a t t h e f l i g h t model would b e b u i l t u s i n g
r a d i c a l l y new technology because o f the un t r ied na ture of
such a technology and the l ack of da ta on i t s r e l i a b i l i t y .

0 Any LSI components t h a t are s u i t a b l e f o r t h e f l i g h t model
w i l l probably be preceded on the market by t h e same type
of equipment implemented i n a less advanced technology.

I n t e s t i n g t h e f l i g h t m o d e l , a s u i t a b l e r e s e a r c h a i r c r a f t

environment w i l l be requi red . We under s t and t ha t NASA Langley i s equipped

wi th such a f a c i l i t y and a n t i c i p a t e t h a t i t can be used for t es t ing .

F o r t h i s r e a s o n we s e e a s t rong involvement of NASA p e r s o n n e l i n t h e s e

s t e p s .

31

IV THE SIFT CONCEPT

A . Introduction

In recent years, a number of fault-tolerant architectures [Refs. 1-41
have been devised and in some cases analyzed and implemented. Most of
these architectures depend heavily on special hardware structures to

achieve their fault-tolerance. While hardware mechanisms are fast and

economical, they are severely limited in the kinds of faults they can
treat. Also, such mechanisms cannot be easily modified to reflect changes

in performance and reliability requirements.

The SIFT (Software-Implemented Fault-Tolerance) computer [Ref. 51

is founded on a new approach to fault-tolerant computing that puts strong

emphasis on the use of software for achieving reliability, with correspond-

ing de-emphasis on special hardware. The software that is critical to the

reliability of the system is designed in accordance with a hierarchical

design methodology [Refs. 61 that permits the stating and proving of
formal properties relating to the system's correctness. A Markov process
model is used to analyze SIFT'S reliability as a function of various

error-detection and reconfiguration strategies. The reliability model

is incorporated into SIFT'S formal description, permitting the demonstra-

tion that the model indeed reflects the behavior of the system.

The remainder of this chapter is concerned with the goals of the
SIFT system and a narrative description of its operation.

We believe that the SIFT concept is useful in many application areas

where high reliability is at a premium. Although a system might have

extensive redundancy, if the software or hardware mechanisms that manage

the redundancy are incorrect, the system will still be unreliable. Later

chapters show how formal verification methods can be used to ensure that

the present system is correct. We have attempted to develop a precise

statement, in terms of a Markov-like model, of the behavior of SIFT in

33

t h e h i e r a r c h i c a l d e c o m p o s i t i o n o f t h e S I F T s o f t w a r e t o f a c i l i t a t e i t s

v e r i f i c a t i o n . We b e l i e v e t h i s i s t h e f i r s t a t t e m p t t o s p e c i f y f o r m a l l y

a f a u l t - t o l e r a n t s y s t e m .

We t h i n k t h a t it w i l l b e p o s s i b l e t o v e r i f y f o r m a l l y t h e SIFT s o f t -

ware, because it i s r e l a t i v e l y s i m p l e and because i t i s h i g h l y s t r u c t u r e d .

Although SIFT exhibi ts some o f t h e f e a t u r e s of a modern operating system,

e . g . , t a s k d i s p a t c h i n g a n d (l i m i t e d) memory management, i t i s much s imple r

t h a n o t h e r s y s t e m s b e i n g c o n s i d e r e d f o r v e r i f i c a t i o n [R e f s . 6-71,

B. SIFT Per formance and Rel iab i l i ty Goals

SIFT is a genera l -purpose computer in tended for use as t h e c e n t r a l

computer i n advanced commercial a i rcraf t . The computat ional requirements

[Ref. 81 f o r t h e a i r c r a f t e n v i r o n m e n t can be summarized as follows:

The cont ro l fea tures can be b roken down t o a b o u t 20 t a s k s ,
e . g . , e n g i n e c o n t r o l , s t a b i l i t y a u g m e n t a t i o n , a n d c o l l i s i o n
avoidance, that must be serviced. The computer i s designed
so t h a t i t c o u l d s e r v i c e t h e f a s t e s t t a s k s e v e r y 1 msec.

The r e l i a b i l i t y r e q u i r e m e n t is dependent on t h e t a s k . The
t a s k s t h a t are f l i g h t cr i t ical m u s t e x h i b i t a f a i l u r e ra te
no t exceed ing 10 -9 / f l i gh t -hour . Th i s h igh r e l i ab i l i t y can -
not be ach ieved wi th cur ren t hardware t echnology wi thout
redundancy.

The programs and associated data that implement the tasks
are of modera te s ize .

A t a s k m i g h t r e q u i r e i n p u t d a t a f r o m o n e o r more o t h e r t a s k s
(t y p i c a l l y o n l y a few words). No other type of communicat ion
exis ts between tasks.

I n p u t f r o m a i r c r a f t s e n s o r s c a n b e a c c o m p l i s h e d by r ead ing
mul t ip l e cop ie s o f s enso r s , and i n some cases t h e o u t p u t
c a n b e d e l i v e r e d t o m u l t i p l e a c t u a t o r s .

C . SIFT System Design

The SIFT computer (Figure IV-1) c o n i s t s o f a number of hardware mod-

u les , each composed of a memory and a p r o c e s s i n g u n i t . T h e i n d i v i d u a l

p rocess ing un i t s w i th in t he modu les are c o n n e c t e d t o t h e c o r r e s p o n d i n g

memory uni t s wi th wide-bandwidth busses . The in te rmodule bus o rganiza t ion

(B1,B2,B3) i s d e s i g n e d t o a l l o w a p rocesso r t o r ead f rom any memory b u t

34

Mi Memory

Pi Processor

Bi Bus

e
e

e

FIGURE N - I SYSTEM CONFIGURATION

35

n o t t o write i n t o o t h e r memory uni ts . The intermodule bus i s expec ted

t o have a much lower bandwidth than an intramodule bus because of the

r e l a t i v e l y low rate of in format ion f low be tween tasks .

The inpu t /ou tpu t sys t em a s sumed t o be connec ted t o t he busses B 1'
B2, and B as shown i n F i g u r e I V - 1 , c o n s i s t s o f a l l the noncomputing

u n i t s , f o r example, t ransducers , ac tua tors , and sensors . The p a r t of

t h e t o t a l i n p u t - o u t p u t t h a t i s carried o u t by program, such as fo rma t t ing

or code convers ion , i s handled i n t h e same manner as f o r any o the r t a sk ;

t h a t is, it i s r e p l i c a t e d i n s e v e r a l p r o c e s s o r s .

3'

A l l l a r g e t a s k s are b roken i n to a number o f sub ta sks i n such a way

than no sub ta sk r equ i r e s more computing power than can be supplied by

one processor . The tasks are g iven t he des igna t ions , A, B, C, ...; t h e

p rocesso r s are numbered 1, 2, 3 Each processor i s capable o f be ing

mul t ip rogramed ove r a number of t asks , as i l l u s t r a t e d i n F i g u r e IV-2.

The cont ro l o f the comput ing sys tem i s carried o u t by a number of

funct ions that can be segmented into two classes:

(1) L o c a l E x e c u t i v e : f u n c t i o n s t h a t a p p l y t o e a c h p r o c e s s o r
(e .g . , d i spa tch ing ,* vo t ing , r epor t ing e r ro r s , l oad ing
new task programs) .

(2) G l o b a l E x e c u t i v e : f u n c t i o n s t h a t are g l o b a l t o t h e s y s -
t e m (e .g . , a l loca t ion and schedul ing of work load , recon-
f i g u r i n g) .

A complete set o f t he so f tware func t ions o f t he Loca l Execu t ive is

p resen t i n each p rocesso r ; t hose o f t he G loba l Execu t ive are carried o u t

i n a s u f f i c i e n t number o f p r o c e s s o r s t o p r o v i d e t h e d e g r e e o f f a u l t t o l -

e r ance r equ i r ed . The f u n c t i o n s are r e a l i z e d by programs t h a t h a v e t h e

same t a s k s t r u c t u r e as a l l other programs.

The normal operating mode f o r a p rocesso r ca r ry ing ou t a t a s k i s as

fo l lows: Data r e q u i r e d f o r t h e t a s k are assumed t o have been computed by

s e v e r a l p r o c e s s o r s (p o s s i b l y i n c l u d i n g t h e same ones ca r ry ing ou t t he

t a s k) . The i n p u t data are read f rom the severa l p rocessors where copies

*
The bus logic envis ioned does not u s e vot ing. The number of busses i s
va r i ab le . The number 3 is chosen for convenience o f d i scuss ion .

36

TASKS

PROCESSORS

r
1 2 3 4 5 6 * = - n

. .
I

N e

FIGURE JY-2 EXAMPLE OF TASK/PROCESSOR ALLOCATION

..

37

exist. A v a l i d a t i o n is now carried o u t , t y p i c a l l y by a v o t e among t h e

several values of each datum. I f a n y o f t h e c o p i e s o f t h e i n p u t d a t a

are found not t o a g r e e , t h i s f a c t i s n o t e d f o r later p rocess ing by t h e

execu t ive . Dur ing t he r ead ing o f t he d i f f e ren t ve r s ions o f a d a t a i t e m ,

d i f f e r e n t b u s s e s are used i n o r d e r t o p r o t e c t a g a i n s t e r r o r s i n b u s op-

e r a t i o n s . The computat ion of the task i s now carried o u t ; t h e r e s u l t s

are l e f t i n t h e memory of the module, and note i s made (i n t h e module)

o f t h e f a c t t h a t t h e t a s k i s computed.

I f d i s c r e p a n c i e s are de tec ted be tween the several ve r s ions o f a d a t a

ob jec t , d i agnos i s p rog rams i n t he g loba l executive de termine which un i t

is a t f a u l t . R e c o n f i g u r a t i o n i s achieved by h a v i n g t h e several v e r s i o n s

o f t he g loba l execu t ive i nd ica t e t o each l oca l execu t ive wh ich t a sks

should be performed and which other processors should replicate t h e cal-

c u l a t i o n s f o r e a c h t a s k . A l l the loca l execut ives examine each of the

g loba l execu t ive ve r s ions and i ndependen t ly vo te on t hese d i r ec t ions .

That is, each loca l execut ive dec ides which of the reconf igura t ion d i rec-

t i o n s i t w i l l accept, u s ing a m a j o r i t y r u l e . A f a u l t y p r o c e s s o r m i g h t

n o t h e e d t h e d i r e c t i o n s o f t h e g l o b a l executive, but , based on the instruc-

t i o n s o f t h e g l o b a l e x e c u t i v e , o p e r a t i v e p r o c e s s o r s w i l l i g n o r e t h e

f au l ty p rocesso r . Thus t he wors t i m p a c t of a f a u l t y p r o c e s s o r i s t h a t

i t w i l l exert a s l i g h t l o a d on the bus system.

D. The Design Methodology

The SIFT des ign has been spec i f ied in accordance wi th a formal de-

s ign me thodo logy t ha t o r ig ina t ed w i th D. Parnas [Refs . 9,101 and has

been extensively developed a t SRI [Ref. 61. The ch ief reasons for us ing

such a medium were (1) t o impose a d i s c i p l i n e on the des ign p rocess as-

s u r i n g a c l e a r l y - s t r u c t u r e d , e a s i l y m o d i f i e d d e s i g n ; (2) t o s i m p l i f y v e r -

i f i c a t i o n o f t h e c o r r e c t n e s s o f t h a t d e s i g n ; a n d (3) t o f a c i l i t a t e t h e

a n a l y s i s o f c e r t a i n r e l i a b i l i t y p r o p e r t i e s . P r e v i o u s u s e o f t h e m e t h o d -

o logy has been conce rned w i th on ly t he f i r s t two of these aims. The SIFT

e f f o r t i s t h e f i r s t i n s t a n c e o f i t s u s e i n c o n n e c t i o n w i t h f a u l t - t o l e r a n t

des ign .

38

The methodology can be viewed as a f o r m a l i z a t i o n o f D i j k s t r a ' s

s t e p - w i s e ref inement concept [Ref . 1 1 1 . The c e n t r a l i d e a is t o decompose

t h e d e s i g n i n t o a hierarchy of modules . The h i g h e s t m o d u l e s i n t h e h i e r -

a r c h y p r o v i d e a n a b s t r a c t , g l o b a l d e s c r i p t i o n o f t h e s y s t e m ' s c a p a b i l i t i e s .

Modules a t lower levels o f t h e h i e r a r c h y s e r v e as b u i l d i n g b l o c k s f o r

implementing the highest- level module. Modules a t s t i l l lower l eve ls a r e ,

bui ld ing b locks for implement ing those a t in t e rmed ia t e l eve l s , and s o on..

The modu les l y ing nea r t he t op o f t he h i e ra rchy t hus t end t o be h igh ly

a b s t r a c t , w h i l e t h o s e a t o r n e a r t h e b o t t o m t e n d t o b e more c o n c r e t e . I n

t h e SIFT des ign , for example, d e s c r i p t i o n s o f real machine hardware ap-

pea r a t the bot tom level , and a s e t - t h e o r e t i c model of the workings o f

t he sys t em appea r s nea r t he t op .

Each module i n t h e h i e r a r c h y is s p e c i f i e d i n t e r m s o f a se t of ab-

stract data s t r u c t u r e s (called V- func t ions) p lus a set o f o p e r a t i o n s

(called O - f u n c t i o n s) t h a t c h a n g e t h e v a l u e s o f t h e s e s t r u c t u r e s . A t any

g iven moment, t h e state of the module is determined by the aggrega te o f

t he va lues o f i t s V-functions. O-function cal ls t h u s cause t r a n s i t i o n s

from one state to another . The V-funct ions and P-funct ions of each mod-

u l e are s p e c i f i e d u s i n g a formal l anguage . The spec i f ica t ions descr ibe

what happens when each o f t he func t ions of a module i s c a l l e d . S p e c i f i c a -

t i o n s f o r O - f u n c t i o n s c o n s i s t o f a s s e r t i o n s , i.e., logicaL formulas that

relate t h e s ta te (va lues of V-functions) of t h e module before an O-funct ion

ca l l , t o t h e s ta te r e s u l t i n g from t h e ca l l . Module s p e c i f i c a t i o n s h a v e

o the r a spec t s [Re f . 1 2 1 t h a t are d i s c u s s e d i n g r e a t e r d e t a i l i n Chap-

ter VIII.

E. Design Features of SIFT

T h i s s e c t i o n is concerned wi th the more impor tan t des ign dec is ions

t h a t we have formulated for SIFT.

1.

I n t h e a i r c r a f t a p p l i c a t i o n , m o s t c o m p u t a t i o n s are i t e r a t i v e .

Thus, tasks are executed on a r e g u l a r b a s i s w i t h a f r equency t ha t is de-

penden t on t he app l i ca t ion . Non i t e ra t ive t a sks can a l so be hand led

39

w i t h i n t h i s scheme w i t h n o a p p a r e n t d i f f i c u l t y . D i s p a t c h i n g i s accom-

p l i s h e d v ia a f i x e d s c h e d u l e t h a t is s t o r e d i n e a c h p r o c e s s o r . T h r e e

per iods , o r f rames , o f a p o s s i b l e s c h e d u l e are d e p i c t e d i n F i g u r e IV-3.
The maximum t a s k i t e r a t i o n rate, o r frame rate, is determined by the

f requency of the "c lock- t icks ," which can be der ived f rom an u l t ra re l iab le

system-wide c lock, or v ia a c l o c k a s s o c i a t e d w i t h t h e p r o c e s s o r i n q u e s -

t i o n . F o r t h e lat ter o p t i o n , t h e c l o c k s i n t h e r e s p e c t i v e p r o c e s s o r s are

loosely synchronized. The synchronizat ion requirement is tha t no p ro -

c e s s o r is t o commence i t e r a t i o n n of a t a s k b e f o r e i t e r a t i o n n - 1 h a s b e e n

completed on a l l p rocesso r s execu t ing t ha t t a sk . Thus , t he s lowes t p ro -

cessor should no t s l i p b e h i n d t h e f a s t e s t p r o c e s s o r by more than one

frame .

FIGURE IV-3 SNAPSHOT OF A SAMPLE SCHEDULE

I n t h e example, t a s k s A and C are dispatched every frame, and

t a s k B every two frames. Note t h a t t a s k C is not d i spa tched a t t h e same

r e l a t i v e time i n e a c h f r a m e . F o r t h e a p p l i c a t i o n b e i n g c o n s i d e r e d , t h i s

i s an a l lowab le pe r tu rba t ion . Each o f t hese t h ree t a sks is in tended

to execu te t o comple t ion du r ing each f r ame i n wh ich i t i s d ispa tched ,

t h u s o b v i a t i n g t h e n e e d f o r many mechanisms usua l ly assoc ia ted wi th

multiprogramming. A t a s k t h a t f o r some reason does no t complete t h e

i t e r a t ion by . ' t he end o f i t s a l l o t t e d time i s h a l t e d i n f a v o r o f t h e n e x t

t a s k . I n F i g u r e IV-3, A d e s i g n a t e s a n i n t e r v a l i n w h i c h t h e p r o c e s s o r

is i n a noncomputing state, a w a i t i n g t h e n e x t c l o c k - t i c k .

2 . Task Communication

Each t a sk i s p rocessed acco rd ing t o t he fo l lowing scheme:

READ DATA FROM EACH TASK SUPPLYING INPUTS
COMPUTE

40

WRITE DATA TO A BUFFER FOR EACH TASK THAT REQUIRES
IT AS AN INPUT

We are assuming tha t any da ta a t a s k r e q u i r e s f o r t h e e x e c u t i o n of a n

i t e r a t i o n i s ob ta ined f rom ou tpu t da t a computed by t h e p r e v i o u s i t e r a t i o n

of t h e same and o the r t a sks .

S ince SIFT does no t a l low any processor to write d i r e c t l y i n t o

t h e memory o f ano the r p rocesso r , t he WRITE DATA o p e r a t i o n is accomplished

by u s i n g a b u f f e r t h a t resides i n t h e w r i t i n g t a s k ' s p r o c e s s o r . I f B i s

t o write d a t a f o r A, B d e p o s i t s t h e d a t a i n a buf fe r t ha t can be subse -

quen t ly r ead by A, which may b e e x e c u t i n g i n t h e same o r i n o t h e r p r o -

c e s s o r s .

The READ DATA ope ra t ion , s ay by t a s k A f rom task B, i s imple -

mented as fo l lows: The da ta depos i ted by each vers ion of B, i n i t s own

b u f f e r , is r ead , and t he ma jo r i ty va lue o f t he s eve ra l ve r s ions o f t he

d a t a i s computed by each vers ion of A . I n o r d e r t o t o l e r a t e bus f a i lu re s ,

each vers ion of B is read via a d i f f e r e n t b u s . The disagreements reported

by the aggrega te o f p rocesso r s are used t o l o c a t e f a u l t y p r o c e s s o r s a n d

busses. Some o f t h e data r equ i r ed by a t a s k are obta ined f rom ex terna l

sources, which can themselves be viewed as t a s k s replicated f o r relia-

b i l i t y enhancement. However, t h e v a r i o u s i n s t a n c e s of a g iven i npu t

datum are n o t l i k e l y t o b e i d e n t i c a l b e c a u s e o f s l i g h t d i f f e r e n c e s among

real phys ica l da t a sou rces . Such s l i gh t d i sag reemen t s can be p reven ted

from causing a vote disagreement by p rov id ing a mechanism whereby a t a s k

performing a r e a d c a n s p e c i f y t h e p r e c i s i o n e x p e c t e d among t h e v a r i o u s

i n s t a n c e s .

When t a s k A v o t e s o n t h e d a t a computed by s e v e r a l i n s t a n c e s o f

t a s k B y t hese da t a mus t a l l b e a s s o c i a t e d w i t h t h e same i t e r a t i o n o f B.

C o n s i d e r t h e t a s k t i m i n g i l l u s t r a t e d i n F i g u r e I V - 4 . S i n c e a l l i n s t a n c e s

of t h e t a s k s e x e c u t i n g i n d i f f e r e n t p r o c e s s o r s are n o t assumed (nor i n -
t ended) t o be mu tua l ly synchron ized , and i f on ly one bu f fe r w e r e pro-

v ided p e r p rocesso r p e r w r i t i n g t a s k , t h e n i t e r a t i o n n of t a s k A i n P2

would read da ta f rom i te ra t ion n -1 f rom A i n P2, b u t f r o m i t e r a t i o n n

from A i n P1. This problem is re so lved by p rov id ing two b u f f e r s i n e a c h

41

ITERATION n-1 ITERATION n ITERATION n+l

SCHEDULE
FOR P1 I

A A I - A * - I A - -

READ -\ WRITE " -
ITERATION ITERATION

SCHEDULE
FOR P2

A A - - - I -

FIGURE IV-4 TASK SCHEDULES DEMONSTRATING THE NEED
FOR TWO COMMUNITY BUFFERS

processo r fo r each wr i t i ng t a sk , one wh ich i s w r i t t e n i n t o o n odd-numbered

i t e r a t ions and t he o the r on even-numbered i t e r a t ions .

3 . D e t e c t i o n and Location of Processor and Bus F a i l u r e s

I n t h i s s e c t i o n , we d i s c u s s t h e method whereby t h e g l o b a l exec-

u t ive can de te rmine which processor o r bus i s f au l ty , based on t he e r ro r

r epor t s o f each o f t he p rocesso r s . Fo r s imp l i c i ty , we assume t r ipl ica-

t ion o f p rocessors and busses , so t h a t s i n g l e f a u l t s c a n b e t o l e r a t e d and

loca ted . The g e n e r a l i z a t i o n t o general redundancy is n o t d i f f i c u l t .

On behalf of a t a s k , a p rocesso r w i l l read data from other pro-

c e s s o r s t h a t , i n t h e a b s e n c e o f f a u l t s , s h o u l d b e i d e n t i c a l . I f o n e o f

t h e d a t a i n s t a n c e s , as r ead by a processor , is i n d i s a g r e e m e n t , t h e n t h e

processor w i l l r e c o r d t h e i d e n t i t y o f t h e d i s a g r e e i n g p r o c e s s o r a n d t h e

ident i ty o f the bus used . The g loba l execut ive w i l l examine t h e p r o c e s s o r -

bus d i sc repanc ie s r epor t ed by each of the p rocessors and a t tempt to iden-

t i f y t h e p r o c e s s o r s (s) a n d / o r b u s (s e s) t h a t are f a u l t y .

T h e f o l l o w i n g f o u r f a u l t t y p e s c o v e r a l l p o s s i b l e s i n g l e p r o -

cessor and bus f a u l t o c c u r r e n c e s t h a t c o u l d l e a d t o e r r o n e o u s r e s u l t s :

(1) Processor computa t ion and/or vo t ing (PCV)--A pro-
cessor p roduces e r roneous va lues in comput ing re-
s u l t s f o r t a s k s a n d / o r i n p e r f o r m i n g a vote and
dec id ing wh ich i npu t (s) t o t he vo te i s i n d i s a -
greement wi th the major i ty .

42

(2) Bus t r a n s m i s s i o n (BT)--A bus changes the value
of a word as it i s t ransmit ted between processors .

(3) Processor-bus i n i n i t i a t i n g r e a d i n g (PB1R)--A pro-
c e s s o r is i n c a p a b l e o f i n i t i a t i n g a r e a d o p e r a t i o n
v i a a p a r t i c u l a r b u s .

(4) Processo r -bus i n depos i t i ng da t a (PBDD)--A proces-
s o r is incapab le o f depos i t i ng d a t a on to a p a r -
t i c u l a r b u s .

To i l l u s t r a t e t h e f a u l t l o c a t i o n a l g o r i t h m , s u p p o s e t h a t on

e a c h i t e r a t i o n , a t a s k reads data f rom a p r e v i o u s i t e r a t i o n o f i t s e l f .

The t a sk execu te s on t h ree p rocesso r s and u s e s t h r e e d i s t i n c t b u s s e s f o r

t h e read ope ra t ion . Fo r odd i t e r a t i o n s , t h e bus assignment i s as i n

F igu re IV-5a and f o r e v e n i t e r a t i o n s as i n F i g u r e IV-5b. The i n t e r p r e -

t a t i o n o f t h e matrices i s as f o l l o w s : t h e P 1 row of Figure IV-5a indi-

cates t h a t when P1 reads f rom P1 i t uses bus B l , * when P 1 reads from P2

i t uses Bus 2, and when P 1 reads f rom P 3 i t u s e s B3. It i s apparent

READ-FROM PROCESSORS

READING P2 P3
PROCESSORS

P1

P2

P3

(a) ODD-ITERATIONS

READ-FROM PROCESSORS

READING P2 P3
PROCESSORS

P1

P2

P3

(b) EVEN-ITERATIONS

FIGURE JV-5 BUS ASSIGNMENTS TO ENABLE SINGLE FAULT LOCATION

*
It is, o f c o u r s e , f e a s i b l e f o r a p r o c e s s o r i n r e a d i n g f r o m i t s e l f t o u s e
the in te rna l p rocessor -bus connec t ion which i s of a higher bandwidth than
the i n t e r -p rocesso r bus sys t em. However, i n t h i s d i s c u s s i o n we assume
tha t t he bus sys t em i s used for a l l read data ope ra t ions . Th i s avo ids
t h e need f o r a separate f a u l t l o c a t i o n a l g o r i t h m when a t a s k r e a d s d a t a
from a t a s k i n i t s processor .

43

t h a t f o r e i t h e r a s s i g n m e n t , t h e o c c u r r e n c e o f a n y o n e o f t h e f o u r f a u l t

t ypes leads t o a n e r r o r which i s masked by t h e v o t i n g scheme. It remains

t o show t h a t a f a u l t c a n b e p i n p o i n t e d t o a processor , a bus , o r a

processor -bus connec t ion (type 3 o r 4) .

The f a u l t l o c a t i o n a l g o r i t h m i s i l l u s t r a t e d i n F i g u r e IV-6, f o r

a f a u l t o f each o f t he fou r t ypes . In t he case of a t y p e 1 f a i l u r e i n -

vo lv ing P 1 (PL computes erroneous resu l t s fo r t he t a sk and /o r p roduces

e r roneous , and a rb i t ra ry , e r ror repor t s) , f rom the repor t s o f P2 and P3

it i s a p p a r e n t t h a t P1 is f a u l t y a n d t h a t i t s e r r o r r e p o r t s s h o u l d b e i g -

nored . The on ly poss ib i l i ty for ambigui ty is between a type 1 f a i l u r e

(P1 v o t i n g i n c o r r e c t l y) and a type 3 f a i l u r e (P1 u n a b l e t o i n i t i a t e a

read v i a B l) . Both fa i lure types could p roduce the same e r r o r r e p o r t

(a l though i t is u n l i k e l y t h a t f o r a type 1 f a i l u r e t h i s would be the case) ,

i n which case t h e g l o b a l e x e c u t i v e would f i r s t s u s p e c t a type 3 ; the sub-

sequent use of P 1 cou ld ac tua l ly r evea l t he p re sence o f a type 1 f a i l u r e .

A f a u l t y u n i t s h o u l d b e i d e n t i f i e d s h o r t l y a f t e r t h e d e t e c t i o n

o f t h e f a i l u r e by t h e v o t i n g p r o c e s s o r s . The g l o b a l e x e c u t i v e w i l l then

i n s t r u c t a l l p rocesso r s t o i g n o r e t h e f a u l t y p r o c e s s o r o r n o t t o u s e t h e

f au l ty bus . Th i s p rocess is w e l l known as adap t ive vo t ing , [Re f s . 13, 141
a n d e n a b l e s S I F T t o t o l e r a t e some m u l t i p l e f a u l t s t h a t may occur be fo re

reconf igura t ion can be comple ted .

A f t e r t h e i d e n t i t i e s o f t h e f a u l t y u n i t s are known t o t h e g l o -

ba l execu t ive , i t i n i t i a t e s a r econf igu ra t ion p rocess , s o as t o u t i l i z e

e f f e c t i v e l y t h e r e m a i n i n g o p e r a t i v e r e s o u r c e s . A f t e r t h e r e c o n f i g u r a t i o n

i s c o m p l e t e , t h e a l l o c a t i o n o f t a s k s t o p r o c e s s o r s a n d b u s s e s c o u l d b e

e n t i r e l y d i f f e r e n t f r o m t h a t p r i o r t o t h e r e c o n f i g u r a t i o n . A s a r e s u l t

o f t he r econf igu ra t ion , p rocesso r s migh t be g iven new schedules , and

t h e p r o c e s s o r a n d b u s a l l o c a t i o n t a b l e s i n e a c h p r o c e s s o r m u s t b e up-

da ted .

The formula t ion of new bus a s s ignmen t s a f t e r de t ec t ion and lo-

c a t i o n o f a b u s f a i l u r e i s e a s i l y c a r r i e d o u t by t h e g l o b a l e x e c u t i v e .

It i s f e a s i b l e f o r t h e g l o b a l e x e c u t i v e t o c o m p u t e i n r e a l t i m e new t a s k

a l l o c a t i o n s and s chedu les i n r e sponse t o ea,ch p r o c e s s o r f a i l u r e .

44

ERROR REPORTS

FAILURE REMARKS P3-odd P3-even P2-odd P2-even P1-odd P1-even

PROCESSOR-COMPUTE MAJORITY AGREEMENT THAT P1 IS (P1.62) (P1,BI) (P1.63) (P1.62) ? ?
AND VOTE (P1) FAULTY, INDEPENDENT OF Pl's

REPORT

BUS TRANSMISSION (P1,Bl) (P2.61)

READ INITIATION

(P2.61) (P3.61) (P3.61) (P1,Bl) UNANIMOUS AGREEMENT THAT 61
IS FAULTY

ONLY P1 REPORTS ERRONEOUS
RESULTS, ALWAYS INVOLVING 61 i

PROCESSOR-BUS, TWO DIFFERENT PROCESSORS - (P1.61) - - (P1,Bl) -
DEPOSITING DATA REPORT ERRONEOUS RESULTS

(P1,Bl) INVOLVING P1 AND B1 -

FIGURE IV-6 ILLUSTRATIONS OF FAULT-LOCATION ALGORITHM

An alternative approach is to precompute the allocations and schedules

for all possible processor fault occurrences. We are now using this

latter approach, since the storage requirements are small.

A global executive instance could reside in each processor, and

thus assume the entire responsibility for reconfiguring that processor,

based on the error reports of all processors. Besides deriving new

schedules and bus assignments for its processor, each global executive

updates tables and loads new tasks into the processor. However, in order

to minimize the executive computational load on the processors, we have

decomposed the executive tasks into two parts: (1) a global executive
task, residing in at least three processors, which computes new allocations

and schedules for each processor, and (2) a local executive residing in

each processor, which determines what its new configuration should be by

voting on the three global executive instances.

F. The Logical Structure of SIFT

The preceding discussion has summarized the primary operation of

SIFT. In this section, we consider a hierarchical decomposition of the

system.

The logical structure of SIFT consists of a hierarchical layering

of modules, which we designate as system modules, and some programs,

namely the application tasks and the global and local executives, that

utilize the facilities of the external interface of system modules. For

simplicity, we will say that the tasks call the functions of the interface.

Each system module may be considered as an abstract machine that maintains

a state (represented by V-functions) and provides operations (0-functions)

to modify the state. The application tasks and executive may then be

considered as programs that run on the abstract machines. The data re-

quired by the tasks are distributed among the system modules.

Each task, including the global executive, executes in some subset

of the processors. The fault status and fault schedules modules, which

are accessed only by the global executive, appear only in processors

executing the global executive.

46

It is assumed that the real-machine module describes the ordinary
machine instructions, e.g., add, store. In reality, the tasks and all

modules above the hardware will call these instructions and thus should

be depicted as connecting to the real machine. We will not concern our-

selves with these connections here since they are not essential to the

fault-tolerance, reliability, and scheduling properties of SIFT..

G. Discussion

The SIFT concept embodies a number of ideas whose usefulness extends

beyond the particular application for which the system is designed. Be-
cause conventional, off-the-shelf processing units comprise the bulk of

the hardware, the system can be easily and inexpensively adapted to a

broad range of needs. Moreover, because the degree of reliability achieved
by the system depends on the number of processors used and on scheduling
strategies rather than on built-in aspects of the design, it can be varied

according to performance and cost requirements of the application.

The use of a formal design medium for purposes of specification,

validation, and reliability modeling can be expected to play an important

role in future designs of fault-tolerant computers. While a system might

make extensive use of redundancy, the system will not be reliable unless

the software or hardware mechanisms that manage the redundancy are correct.

Similarly, the formulation and use of elaborate reliability models is of

little value if it cannot be demonstrated that these models actually re-

flect the behavior of the system. We believe that SIFT constitutes a
major step in the direction of fault-tolerant systems whose correctness

and reliability can be verified.

REFEXENCES

1. A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr,
and D. K. Rubin, "The STAR (self testing and repairing) computer:
An Investigation of the Theory and Practice of Fault-Tolerant Com-
puter Design," IEEE Trans., Vol. C-20, No. 11, pp. 1312-1321 (No-
vember 197 1).

47

2.

3.

4 .

5.

6.

7.

8 .

9.

10.

11.

12.

A. L. Hopkins, Jr., "A Fault-tolerant Information Processing Concept
for Space Vehicles," IEEE Trans., Vol. C-20, No. 11, pp. 1394-1403
(November 197 1).

F. P. Maison, "The MECRA: A Self Reconfigurable Computer for Highly
Reliable Process," IEEE Trans., Vol. C-20, No. 11, pp. 1382-1388
(November 1971).

"Design of a Modular Digital Computer System," NASA CR-123655,
1972.

J. H. Wensley, "SIFT-Software Implemented Fault Tolerance," Proceed-
ings of the Fall Joint Computer Conference, Vol. 41, pp. 243-253
(AFIPS Press, Montvale, New Jersey, 1972).

L. Robinson, K. N. Levitt, P. G. Neumann, and A. K. Saxena, "A Formal
Methodology- for the Design of Operating System Software," in Current
TGends in Programming Methodology, Vol. 1, R. T. Yeh (ed.) (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1976).

P. G . Neumann, L. Robinson, K. N. Levitt, R. S . Boyer, and A . Saxena,
"A Provably Secure Operating System," final report under Contract
DAAB03-73-C-1454, Stanford Research Institute, Menlo Park, California
(June 1975).

R. S . Ratner, et al., "Design of a Fault-Tolerant Airborne Digital
Computer," Volume II--Computational Requirements and Technology,
Final Report. NASA CR-132253, 1973.

D. L. Parnas, "Information distribution aspects of design method-
ology," in Proc. IFIP Congress 1971 (North-Holland Publishing Com-
pany, Amsterdam, 1972).

D. L. Parnas, "A technique for module specification with examples,"
Comm. ACM., l5, 5, pp. 330-336 (May 1972).

E. W. Dijkstra, "Notes on structured programming," in Structured
Programming, C.A.R. Hoare (ed.) (Academic Press, New York, New
York, 1972).

L. Robinson, "Specification Techniques," Proceedings of the Thirteenth
Design Automation Conference (June 1976).

48

I I I 111111 I

13 . w. H . pierce, "Adaptive Vote-Takers Improve the Use of Redundancy,"
i n Redundancy Techniques for Computing Systems, pp. 229-250 (Spartan
Books, Washington, D . C . , 1962).

14. J. Goldberg, K. N. Levitt, and R. A. Short, "Techniques for the
Real izat ion of Ultra-Reliable Spaceborne Computers,'' F inal
Report. NASA CR-80019, 1966.

49

V TASK STRUCTURE, ALLOCATION AND SCHEDULING

A. I n t r o d u c t i o n

T h i s s e c t i o n o f t h e r e p o r t d e s c r i b e s e f f e c t i v e p r o c e d u r e s f o r t h e

fo l lowing major e lements in the design of a f au l t - to l e ran t compute r sys -

tem:

0 A n a l y s i s o f t a s k s t o d e r i v e a p p l i c a b l e f l i g h t p h a s e
d e s c r i p t i o n s .

0 Determir ia t ion of the numbers and s izes of the redundant
processor and memory u n i t s r e q u i r e d f o r t h e r e l i a b l e
execu t ion o f t he spec i f i ed t a sks .

A l l o c a t i o n o f t a s k s t o s p e c i f i c p r o c e s s o r a n d memory
u n i t s t o a c h i e v e some balance of processing and memory
loads .

0 Spec i f i ca t ion o f t a sk s chedu l ing and r econf igu ra t ion
procedures and symbologies in a c o n c i s e , e f f i c i e n t
f r o m s u i t a b l e for implementation.

The a n a l y s i s c o n s i d e r s r e p r e s e n t a t i v e t a s k s f o r t h o s e a i r c r a f t f u n c -

t i o n s t h a t h a v e b e e n p r e v i o u s l y d e s c r i b e d as c a n d i d a t e s f o r c o n t r o l b y

SIFT. While t h i s se t i s more comprehensive than the set o f t a s k s t h a t

w i l l b e i n i t i a l l y implemented i n t h e p r o t o t y p e , i t i s impor t an t t o deve l -

op a design methodology for SIFT t h a t w i l l b e a p p l i c a b l e u p t o t h e d e s i r e d

conceptua l level o f t echno log ica l soph i s t i ca t ion . Th i s app roach a s su res

a n upward compat ib le des ign t h a t ' w i l l meet the requi rements o f a smaller

scale p r o t o t y p e w h i l e n o t c o n s t r a i n i n g o r i n v a l i d a t i n g f u t u r e levels of

system expansion.

Th i s s ec t ion a l so cons ide r s s chedu le imp lemen ta t ion f ac to r s such as

schedu le s to rage , t he impac t o f sys t em deg rada t ion , t he p rac t i ca l imp l i -

c a t i o n s of t a s k c r i t i c a l i t y class, the change o f s chedu les w i th f l i gh t

phase change , and approaches to der iv ing new task schedules dynamica l ly

d u r i n g f l i g h t .

51

B. Flight Phase Analysis

The set of flight-related application tasks previously described in

the SRI report entitled "Design of a Fault Tolerant Airborne Digital

Computer" [Ref. 13 was examined to establish configurations of active

tasks sufficient to support the major flight phases potentially encoun-

tered in normal flight. The intent of this study was to determine the

variations in the task profiles of the various phases. It became neces-
sary to distinguish between tasks that were actively being executed,

those that were serving a vital backup role (referred to as passive allo-

cation), and those tasks that performed secondary roles by actively con-

firming and augmenting the results of the primary tasks. In some

instances, certain tasks were not required at all for certain phases.

The derived flight-phases (Table V-1) constitute the major operational

modes for which SIFT must provide task allocation and scheduling among

the multiple processors and memories, as discussed in the following

portions of this section.

An anomaly state presenting a "Navigational Failure" is also speci-

fied in Table V-1 as an illustrative example. Although it is represented

as a phase, it is clearly a state that may need to be accommodated during

several of the described phases. The primary change is the shift of the

navigational support system from the VOR/DME and Multiple-DME to the Omega

or satellite equipment as primary support, with reliance on Air Data for

secondary support. Thus, the task schedules could be modified by simple

replacement of the preferred primary and backup navigation systems by

the appropriate secondary set of primary and backup systems.

C. Review of Task Characteristics for Fl~igkt Phase Assignment and
Processor-Memory Unit Allocation

- "

The set of flight tasks that were to be considered for initial SIFT

implementation are listed in Tables 3 and 4 of the SRI report entitled

"Design of a Fault Tolerant Airborne Digital Computer" [Ref. 13. Further

qualification and modification of the characteristics of these tasks have

been made to facilitate schedule development. Values of some properties

52

Table V-1

SYSTEM CONFIGURATION ANALYSIS

Task
Code

A1
A2
A 3

A4-6

A7

A8
B2
83
B4
B5
B l

B8
B9
B 10

c1
c2
c3
Dl
D2
D3
D4

D5

- Application

Attitude Control
Flutter Control
Load Control

Autoland
Autopilot
Attitude Indicator
Inertial
VOR/DME & Multiple DME
OMEGA or Satellite
Air Data (Navigation)
Flight Data

Airspeed, Altitude
Graphic Display
Test Display

Collision Avoidance
Data Comn., A/C
Data Comn., Air/Ground (DABS)

AIDS
Instrument Monitor
System Monitor
Life Support

Engine Control

Flight Phase
C 1 imb Initial Hissed Navigational

Takeoff Descent
"

- P

P
S

-
-
- -
- P
P P
P P

P

B

-
-
- -
- P
P P

P
S S

P P
P P
S S

S S

S S

S S

P
P P

-

-

Cruise
P
P
S
-
P
P
P
P

B
-
P
P
P
S

P
P
S

S

S

S

P
P

Approach
P
-
S
-
P
P
P
P

B
-
P
P

P
P
P
P
P
S

S

S

S
P

Landing
-
-
P
P

B
P
P
P
B
-
P
P

P
P
P
P
P
S

S

S
-
P

Approach

P
-
S
-
P
P

P
P
B
-
P

P
P
P
P
P
P
S

S

S
-
P

Failure

P
-
S
-
P
P
P
-
P
B
B
P
-
S

P

P
S

S

S

S

P
P

Symbols: P: Prime; S: Secondary; B: Backup; -: N/A

needed to be assigned, and ranges of values required unique assignments

before schedule development could proceed. In addition, the local and
global executived have now been specified to a degree permitting values

with a sufficient level of confidence to be assigned to their description.

Likewise, the flight-phase-change tasks and the reconfiguration tasks can

be specified more accurately. A summary of the modifications and addi-
tions that have been made to the tables are given in Table V - 2 . The

resulting revised set of task modules-and their properties is shown in

Table V - 3 . These data can now be used to allocate task sets to processor-

memory units and to develop a suitable task scheduling algorithm.

*

D. Task Allocation and Schedule Generation

Procedures are outlined here for the allocation of the various tasks

to specific (redundant) processor and memory units, and for the organiza-

tion of the scheduling of those tasks.

The problems of allocating and scheduling these tasks are considered

in some detail. Assumptions regarding the characteristics of the tasks

include :

All tasks pertinent to a flight phase are resident in
main memory during that phase.

0 Reconfiguration can occur due to flight phase change,
processor-memory failure or pilot intervention.

Software task replication in separate processor-memory
units is used to achieve fault-tolerance.

Replicated tasks will be only loosely synchronized.

The tasks operate on a real-time basis and have
stringent execution periodicity requirements.

*
The alphanumeric task designators are those used in Table V - 1 .

54

I

Table V-2

ADJUSTMENTS AND MODIFICATIONS
TO THE INITIAL TASK SPECIFICATIONS

Tasks A4, A 5 , and A6, the Autoland Tasks, were coa lesced
in to one t a sk .

Task B 1 , t h e S u p e r v i s o r Task, w a s merged wi th the Loca l
Execut ive, LE.
Task B 4 , DME/OMEGA, was combined wi th Task. B3, VOR/DME,
s i n c e t h e y would not run concurren t ly . Also , B 4 was
as s igned t he same MIPS as B 3 . '

Task B 5 , A i r Data, was a s s i g n e d a n i t e r a t i o n ra te p e r
second of 5 and a MIPS of 0.001.

The c r i t i c a l i t y class of Task C2, Data Comm. A/C, w a s
set t o 1 assuming tha t the backup i s u n d e r p i l o t d i r e c -
t i o n .

V a r i a b l e t a s k c r i t i c a l i t y class assignments were f i x e d
by assuming the highest value.

Task D3, System Monitor, w a s a s s i g n e d a n i t e r a t i o n rate
p e r second of 5 . M u l t i p l e o r v a r i a b l e i t e r a t i o n rates
were chosen t o have t he h ighes t va lue .

Task LE w a s added t o t h e t a b l e f o r t h e L o c a l E x e c u t i v e
and i s t o t a l l y r e p l i c a t e d . It h a s t o r u n as f r e q u e n t l y
as the mos t f requent module , tha t i s , w i t h a n i t e r a t i o n
ra te of 670 p e r second. The number of i n s t r u c t i o n s p e r
i t e r a t i o n was determined to be 50.

The Global Execut ive, GE, was a l s o added and was ass igned
a n i t e r a t i o n ra te of f ive per second and 200 i n s t r u c t i o n s
p e r i t e r a t i o n .

Inf requent requi rements -
I n s t r u c t i o n s

p e r I t e r a t i o n *

Reconf igura t ion - Global 100
Reconf igura t ion - Local 120
Fl ight phase change - Global 100
Fl ight phase change - Local 120
Program load 20 X number of words

*
C r i t i c a l i t y c l a s s = 1.

55

Table V-3

TASK MODULE PROPERTIES FOR SCHEDULING ASSIGNMENTS

Iteration
Task Rate/Sec.

A1 20
A2 250

* A3 240
* A4,5,6 160

A7 5
* A8 30

B2 25
* B3 5

B4 5
B5 5
B6 0.2
B7 5

* B8 16
* B9 8
B10 10

* c1 670
* c2 5
* c3 4
* Dl 4
* D2 5
* D3 5
* D4 0.5
* D5 33
*LE 670
* GE 5

* REC-GE
* FPC-GE * IRREGULAR

* FPC-LE 1
* PROGRAM LOAD

Period in
Sec. (~103)t

50
4
4 (3)
6.25 (6)

33.3 (30)

40
200 (180
200
200
5000
200

125 (120)
100

200

62.5 (60)

1.5
200
250

250
200
200

2000
30

1.5
200 (180)

Instructions
Iteration

1150
276
58

344
200

2567

1360
800
800
200

5000
5600
562
4000
1900

31
1200
250

500
2800
200

2000
3606

50
200

100
120
100
120
20*

Abbreviations:
FPC - Flight phase change
LE, GE - Local and Global Executives
REC - Reconf igurat ion
T - Totally replicated

- MIPS

0.023
0.069
0.014
0 .OS5
0.001
0.077

0.034
0.004
0.004
0.001
0.001
0.028
0.009
0.032
0.019

0.021
0.006
0.001

0.002
0.014
0.001
0.001
0.119

0.034
0.001

Criticality
Class

1
1
3 *
1 *
4
1 *

2
4 *
4
4
4
4
4 *
4 *
4
4 *
1 *
4 *
5 *
4 *
I *
1 *
1 *

l * T
1 *

1 *
l * T
1 *
l * T
l * T

Memory

2075
92
60

1025
250
1310

2250
3 00
505
135
3 15
550
430
6250
9340

1200
610
562

1300
1900
1000
1000
1500

320
1:oo

*
Most demanding phase, Autoland

The values in parentheses are period assignments somewhat shorter than the
desired requirements, but representing convenient multiples of the smallest
period (1.5 msec.), and of subsequent higher multiples, for schedule derivation.
Note that in no instance was the period changed by more than 30%.

t

*Times the number of words

56

To achieve ba lanced task loading in t e rms of bo th
processing and memory requirements .

To a l low enough spare capac i ty to permi t reconf ig-
u ra t ion w i th one less memory-processor unit .

0 To accomodate supplementary "passive" a l locat ion of
c r i t i c a l t a s k s t h a t demand p rocess ing w i th in a t i m e
f r a m e t h a t d o e s n o t a l l o w f o r r e c o n f i g u r a t i o n .

0 To p e r m i t e i t h e r f u l l t a s k a l l o c a t i o n o r s i n g l e f l i g h t -
p h a s e t a s k a l l o c a t i o n w i t h r e c o n f i g u r a t i o n t o a c h i e v e
f l igh t -phase change .

Schedule genera t ion has a similar set o f o b j e c t i v e s :

0 A t echnique wi th an unequivoca l se t of task sequence
ass ignment ru les .

A s c h e d u l e s p e c i f i c a t i o n t h a t c a n be e f f i c i e n t l y
s t o r e d , a p p l i e d , and changed.

0 A der iva t ion methodology tha t i s f l e x i b l e and can be
shown t o a c h i e v e t h e r e q u i r e d t a s k e x e c u t i o n p e r i o d i c i t y .

0 A r e p r e s e n t a t i o n t h a t i s eas i ly i n t e rp re t ed and imp le -
mented.

P r i o r t o d e t a i l e d a l l o c a t i o n a l g o r i t h m d e v e l o p m e n t , c o n s i d e r a t i o n s h o u l d

b e g i v e n t o t h e way t h a t t a s k s c h e d u l e s w i l l be implemented. Of p a r t i c u -

l a r i n t e r e s t h e r e are such f ac to r s as:

0 The r e source pena l ty fo r l oad ing a l l normal tasks
b e l o n g i n g t o a n y f l i g h t p h a s e s c h e d u l e s so t h a t
no r e c o n f i g u r a t i o n w i l l be necessary .

When a f a i l u r e o r set of f a i l u r e s o c c u r s , t h e method
by which new schedules are de r ived and implemented.

0 The e x t e n t t o w h i c h t a s k s c a n b e r e p l a c e d b y p i l o t
c o n t r o l so t h a t s c h e d u l e s may b e r e v i s e d by simply
e l i m i n a t i n g f a i l e d t a s k s .

The form i n which schedules are t o b e s t o r e d a n d / o r t h e
way they w i l l be genera ted on- l ine .

The r e s o l u t i o n o f t h e s e d e s i g n f a c t o r s i s dependen t on t he t a sk r ep l i ca -

t i o n scheme, p a s s i v e a l l o c a t i o n t e c h n i q u e s , f a i l u r e state procedures ,

a n d t h e t o t a l number of processor -memory un i t s . I f a general ized approach

57

is taken to addressing these factors, the factors might be evaluated

from several alternative approaches to determine the impact of these

assumptions on either the required processor-memory resources, the sim-

plicity of schedule derivation and implementation, or the reconfiguration

method. For instance, if we triply replicate all tasks and, for all

flight phases simultaneously, allocate them over five processor-memory

units, would resources of any of these units be exceeded, and what is the

size memory units that is required? Likewise, what is the resulting

accumulated distribution of processor and memory resources? These. and

other similar questions are examined in this section.

The problems associated with reconfiguration resulting from system

failures are considered first and may determine the amount of spare

capacity that must be designed into the system to assure redistribution

of tasks on a failed processor-memory unit onto the other operational

units. A less critical task that is adequatly replicated initially may

not need to be reassigned. Very critical tasks either must be reassigned

to another processor-memory unit, must have adequate backup via another

task that is operational, or must have been passively allocated on some

other processor. Tasks that cannot tolerate missed iterations and that

belong to a high-criticality class should be passively allocated to guar-

antee immediate takeover of the critical task processing from a failed

unit .
One approach is to take all the tasks in any of the phases and dis-

tribute them across processors. However, this distribution would lead

to rather heavily loaded processors, and one or more additional processor

units would be required to support it. Such a distribution would, how-

ever, facilitate reconfiguration and flight phase change.

If there is only one flight phase per allocation or if, at least,

not all tasks are loaded into the system all of the time, then the

occurrence of a failure requires either accessing stored schedules o r

having a method of automatically generating them. Such methods are con-

sidered in detail in the next section. Another approach is to depend

upon pilot intervention for certain noncritical support functions and to

more than triply replicate the critical tasks. While these approaches

58

are all viable, the current documents need only demonstrate the feasi-

bility of at least one such allocation and scheduling scheme.

In order to estimate the minimum adequate number of processors to

forestall degradation because of a single processor or memory unit loss,

a simple approach might be taken. First, all tasks above minimum criti-

cality must be at least triply replicated to assure an adequate level of

confidence. Three replications are sufficient, but four give an addi-

tional margin that allows one processor-memory to fail while the module
continues to execute reliably without configuration. Assuming, however,

that reconfiguration is acceptable and necessary, a simple approach to

estimate the number of processors sufficient for the task is:

Let PT be the processing time to carry out one iteration of the
task,

T be the iteration period of the task,

MR be the memory requirement of the task,

then, the total processor requirement is

the total memory requirement is

M =
all tasks

To illustrate application of possible allocation techniques, two
approaches are taken. Instead of focusing initially on the flight phases,

it was decided to attempt to schedule all tasks across all processors.
These processors are assumed to have 0.5 MIPS (millions of instructions

per second) capacity and have a 20-kiloword memory.

First, all tasks were assigned triple replication. Then the number

of processors was calculated:

59

Number of -
Processo r s

-

I n t h i s example, N = t h e

2 MIPS X 3 X -
j=1 0 .5

1 . 2 +

number of t a s k s , MIPS
j

1 = 4.8 '5 .

i s t h e m i l l i o n s of i n s t r u c -

t i ons / second r equ i r ed fo r t a sk 3 i s f o r t r i p l e r e p l i c a t i o n , t h e 0.5

f a c t o r i s the machine MIPS, and the 1 . 2 f a c t o r p r o v i d e s a sa fe ty marg in .

When t h e r e s u l t i n g number i s rounded up to ach ieve an in teger number of

p rocesso r s , t he app ropr i a t e number i s found t o b e f i v e . Thus, when t h e s e

t a s k s are a l l o c a t e d o v e r f i v e p r o c e s s o r s , a s s i g n i n g t a s k s o f t h e h i g h e s t

c r i t i c a l i t y class f i r s t , and a l l o c a t i n g s o l e l y on t h e b a s i s of processor

r e s o u r c e u t i l i z a t i o n (MIPS) and n o t on memory, t h e a l l o c a t i o n f o u n d i n

Table V-4 i s ob ta ined . Of p a r t i c u l a r n o t e i s the degree o f MIPS ba lanc ing

achieved. The t o t a l s a r e c o n s i s t e n t t o w i t h i n a p p r o x i m a t e l y 49.2%.

j'

*

The fo l lowing s t eps de f ine a more r e f i n e d method f o r d i s t r i b u t i n g

r e p l i c a t e d t a s k s o v e r a number of processor-memory uni ts while assur ing

t h a t some balance of loads i s achieved .

0 D e f i n e t h e f l i g h t p h a s e and t a s k s t o b e r e s i d e n t i n
t h e memory u n i t s .

a Tabu la t e fo r each t a sk : (1) t h e t a s k MIPS and t h e
f r a c t i o n a l p r o c e s s o r u t i l i z a t i o n f o r t h e assumed
processor type, and (2) t h e t a s k memory requirement
i n t housands o f words , and t he f r ac t ion o f t o t a l
memory r e q u i r e d (f o r t h e s i z e of memory u n i t t o b e
used) .

a D e t e r m i n e t h e r e q u i r e d r e p l i c a t i o n p e r t a s k b a s e d on
t h e c r i t i c a l i t y c l a s s and whether passive a l l o c a t i o n
w i l l b e r e q u i r e d .

0 Accumulate the sum of t h e MIPS r e q u i r e d f o r a l l t a s k s
o f t he wors t - case f l i gh t mode t o d e t e r m i n e e i t h e r :
(1) t h e t o t a l number of a p respec i f i ed p rocesso r t ype
t h a t w i l l b e r e q u i r e d ; o r (2) the p rocessor speed re-
qui red to p rovide one comple te f l igh t -mode process ing
c a p a b i l i t y p e r p r o c e s s o r (i n c l u d i n g a r e a s o n a b l e s a f e t y
margin) . From an o v e r a l l r e l i a b i l i t y v i e w p o i n t , i t i s
d e s i r a b l e t o p l a n f o r a t least f i v e p r o c e s s o r s (as d i s -
cussed i n Chap te r V I I) .

*
However, the ba lance may no t a lways be t h i s c lo se .

60

Table V-4

ALLOCATION O F ALL TASKS TRIPLY REPLICATED ACROSS FIVE PROCESSORS

Allocation Sequence:

0 Take t a s k s w i t h c r i t i c a l i t y c l a s s 1 - 2 and d i s t r i b u t e them by maximum
MIPS; then

0 Take t a s k s w i t h c r i t i c a l i t y c l a s s 3-5 and d i s t r i b u t e them by maximum
MIPS.

"~ ~

:G MIPS ~. 1 2 3 4 5
~ ~~~

1 0.119 D5 D5 D5

1 0.077 A8 A8 A8

1 0.069 A2 A2 A2

1 0.055 A4 A.4 A4
2 0.034 B 2 B 2 B 2

1 0.023 A 1 A 1 A 1

1 0.006 c2 c2 c2
1 0.002 D3,4 D3,4 D3,4

~~ ~ ~~ .

4

4

4

4

3

4

4

4

4

5

4

4

4

4
-

0.032

0.028

0.021

0.019

0.014

0.014

0.009

0.004

0.004

0.002

0.001

0.001

0.001

0.001
-

T o t a l

B9

B 10

A.3

D 2

B8

A7

B6

B5

B9

c1

A.3

D2

B3

B4

A7

c3

B 5

B9

B7 B7

c1
B 10

A3

D2

B 8

B3

B4

D l D l

A7

B6

c 3

B5

B 7

c1
B 10

B 8

B3

B4

D l

B6

c3

0.322 0.322 0.321 0.322 0.321

61

0 Accumulate the sum of the memory requi rements for a l l of
t h e a l l o c a t e d t a s k s o f t h e w o r s t - c a s e f l i g h t mode (inc lud -
ing a r easonab le s a fe ty marg in) fo r each o f t he p rocesso r s .
I n a d d i t i o n , memory mus t be p rov ided fo r t he pas s ive
a l l o c a t i o n of those c r i t i c a l t a sks fo r wh ich , du r ing
r econf igu ra t ion , no m i s s e d i t e r a t i o n s c a n b e a l l o w e d .

0 B e g i n a l l o c a t i o n b y s e l e c t i n g t h e u n a l l o c a t e d t a s k
r e q u i r i n g t h e h i g h e s t f r a c t i o n of e i t h e r p r o c e s s o r MIPS
o r memory s torage, whichever i s g r e a t e r . I n t h e e v e n t
of a t ie , select the one w i th t he h ighes t combined
processor-memory t o t a l . F o r t h e g i v e n f l i g h t p h a s e ,
p a s s i v e a l l o c a t i o n s h o u l d b e b a s e d on t h e memory
requirement only. That i s , t h e r e q u i r e d memory s t o r a g e
i s c o n s i d e r e d f o r p a s s i v e a l l o c a t i o n , a l o n g w i t h t h e
ac t ive modules . However, t h e e x e c u t i o n of t i m e f o r t h e s e
t a s k s i s t r e a t e d as z e r o f o r p r o c e s s o r r e s o u r c e u t l i z a t i o n .

Us ing t he de t e rmined a l loca t ion c r i te r ia (e i t h e r memory
o r p r o c e s s o r) , a s s i g n e a c h s e l e c t e d t a s k i n t u r n t o t h e
memory o r p rocesso r , as appropr ia te , wi th the mos t avail-
ab le unass igned capac i ty . Ass ign t a sks t o t he i nd ica t ed
r e p l i c a t i o n l e v e l . The o n l y c o n s t r a i n t i s t h a t a g iven
t a s k may be ass igned a t most once t o a given processor -
memory u n i t .

0 Cont inue ass igning tasks o f lower load requi rement un t i l
a l l tasks have been ass igned . Tasks tha t are t o t a l l y
r ep l i ca t ed , such as the Local Execut ive, can be ass igned
a t any po in t dur ing the p rocedure . For the examples given
h e r e , t h e s e t a s k s a r e a s s i g n e d las t .

0 Check accumula ted capac i t ies on a l l u n i t s t o v e r i f y t h a t
none have been exceeded. Of any have been exceeded or i f
e i t h e r r e s o u r c e i s badly misbalanced, a r e a l l o c a t i o n
should be made t o a c h i e v e b e t t e r b a l a n c e . However, f o r
a g iven t a sk , r ea l loca t ion can t ake place o n l y t o u n i t s
t ha t have no t a l r eady been a l loca t ed t ha t t a sk .

A f lowchar t r ep resen t ing t hese bas i c steps i s g i v e n i n F i g u r e V-1.

Next , app ly ing t h i s a lgo r i thm to t he f l i gh t phase r equ i r ing t he mos t

r e sources , we encounter more i n t e r e s t i n g c o n d i t i o n s . An examination of

t h e f l i g h t p h a s e s i n T a b l e V - 1 leads to the Landing Phase as the most

demanding o f the phases . The c r i t i c a l d a t a f o r a l l o c a t i o n a r e shown i n

Table V - 5 . The a l l o c a t i o n b a s e d on these da t a i s shown i n T a b l e V-6.

No preference was made f o r c r i t i c a l i t y c l a s s . T r i p l e r e p l i c a t i o n was

assumed. Also, the f ive processors used in the previous example were

used here . This i s t o a l l o w f o r p a s s i v e a l l o c a t i o n a s w e l l as to a l low

modu les f rom o the r phases t o be p re sen t t o f ac i l i t a t e r ap id phase change .

62

". " .- "._ .. . , . , . .I

p. = Processing Requirement

m. = Memory Requirement

Pi = Processing Load Already
Allocated to Module i

Mi = Memory Load Already
Allocated to Module i

’ for Task j

’ for Task j

FIGURE V-I

I I ALLOCATE TASK J
TO MODULE i

Pi < 1 Exit

Algorithm 2

ALLOCATION ALGORITHM

6 3

Table V-5

TABLE OF AUTOMATED FLIGHT PHASE TASKS AND THE
CHARACTERISTICS USED TO DISTRIBUTE THEM OVER PROCESSOR-MEMORIES

Task

A3
A4

A8

B3

B8

B 9

c1

c2
c3

Dl

D2

D3

D4

D 5

GE

-

LE (T)*

MIPS

0.012

0.055

0.077

0.004
0.009

0.032

0.021

0.006

0.001

0.002

0.014

0.001
0.001

0.119

0.001

0.034

Fraction
of 0.5 MIPS
Processor

0.024

0.110

0.154

0.008
0.018

0.064

0.042

0.012

0.002

0.004

0.028

0.002

0.002

0.238

0.002

0.068

Memory (K)

0.06

1.02

1.31

0.30

0.43

6.25

1.20

0.61

0.56

1.30

1.90
1 .oo
1 .oo
1.50
1.10

0.32

Fraction
of 20K
Memory

0.003

0.051

0.065

0.015

0.021

0.312

0.060

0.030
0.028

0.065

0.095

0.050

0.050

0.075

0.055

0.016

*
T = Replicated totally

64

Table V-6

ALLOCATION EXAMPLES--DISTRIBUTED ASSIGNMENT OF
AUTOLAND PHASE TASKS OVER FIVE PROCESSOR-MEMORY UNITS

Accumulated Task MIPS
er Processor

Task M/P* 1 2 3 C -
B9
D5
A8
A4
D2
Dl
c1
GE
D3
D4
c2
c3
A3
B8
B3
LE

M 0.032 0.032 0.032
P 0.151
P 0.109 0.109
P 0.164 0.164
M 0.165
M 0.166
M 0.185
M 0.166
M 0.186
M 0.167
M 0.172
M 0.187 0.168
P 0.199 0.180 0.184
M 0.208
M 0.184 0.188
M 0.209 0.185 0.189

4 -
0,119
0.196

0.210
0.212
0.233
0.234
0.235
0.236
0.242

0.251
0.255
0.256

- J

0. 119

0.174
0.188
0.190
0.211
0.212
0.213
0.214
0,220
0,221

0.230

0.231

Accumulated Task Memory (K)
per Memory Unit

1

6.25

7.56
8.58

-

9.78

10 78

11.34

11.83

12.15

11 a40

2 3

6.25 6.25
7.75

7.56
8.58

9.88

"

9.65

10.75

10.88
11.36

11.44
11.50 11.42

11.80 11.72
12.12 12.04

*
M - Allocation based on fraction of memory requiring largest capacity
P - Allocation based on fraction of processor requiring largest capacity
Notes: 1. Autoland requires the greatest processing.

2. Memory assumed -- 20 kilowords
3. Processor assumed -- 0.5 MIPS.

4 -
1.50
2.81

4.71
6.01
7.21
8.31
9.31
10.31
10.92

11.35
11.65
11.97

- 5

1.50

2.52
4.42
5.72
6.92
8.02
9.02

10.02
10.63
11.19

11.62

11.94

I n t h i s case, the accumulated MIPS and memory are r e p o r t e d i n e a c h

column. The r e s u l t s i n d i c a t e t h a t t h e d i s t r i b u t i o n i s no t well equa l i zed

f o r t h e p r o c e s s o r (a b o u t +16% d e v i a t i o n) w h i l e t h e memory d i s t r i b u t i o n

i s c l o s e l y b a l a n c e d (t o a b o u t +1%).

Thus, v i ab le a l loca t ion s chemes have been demons t r a t ed t ha t are

e a s i l y implemented and s a t i s f y a l l s t a t e d a l l o c a t i o n o b j e c t i v e s .

E . Schedule Der iva t ion

Now t h a t some f l ex ib l e a l l oca t ion t echn iques have been desc r ibed ,

the problem of s c h e d u l e d e r i v a t i o n c a n b e a d d r e s s e d . P r o p e r t i e s t h a t

are b a s i c t o s c h e d u l i n g of t a s k s i n SIFT inc lude :

0 Repl i ca t ed t a sks execu t ing on d i f f e r e n t p r o c e s s o r
u n i t s need no t be in lock-s tep synchroniza t ion , bu t
are only loosely synchronized.

0 Tasks may be preempted, but such a procedure can
make program proving more d i f f icu l t .

0 Fixed sets o f t a s k s r e p r e s e n t f l i g h t p h a s e s and are
executed wi th a g i v e n p e r i o d i c i t y .

0 The only mandatory descr ip t ion of a g iven schedule
execut ion i s one of f l i g h t c h a n g e o r r e c o n f i g u r a t i o n .

I n view of these condi t ions , severa l assumpt ions can be made t h a t some-

what s impl i fy t he approach t o s chedu l ing .

Tasks are assumed t o b e a s s i g n e d t o s c h e d u l e s as s i n g l e
u n i t s t h a t c a n n o t be preempted. The only except ions occur
when t a s k s e x e c u t e f o r a per iod of t ime t ha t equa l s o r
e x c e e d s t h e s h o r t e s t t a s k p e r i o d (e q u a l t o t h e p e r i o d o f
the Loca l Execut ive) . These t asks do requi re p reempt ion
and w i l l be considered more c losely.

Tasks are execu ted acco rd ing t o a f i x e d t a s k s e q u e n c e i n
which each task i s a l loca ted one o r several t i m e b locks .
E x c e p t f o r t h e c l o c k r o u t i n e and g l o b a l e x e c u t i v e f l i g h t
f a i lu re o r phase change p rocess ing , no t a s k i s i n t e r r u p t -
d r i v e n o r i n i t i a t e d o u t s i d e of the f ixed sequence.

The schedule i s based on t h e maximum execut ion t i m e of
each of the member t a sk modu les (w i th p rov i s ion fo r a
r easonab le s a fe ty marg in) .

The schedule main ta ins a t o t a l l y r e p r o d u c i b l e o r d e r i n g o f
t a s k s t h a t a s s u r e s a l l t a s k s o f t h e r e q u i s i t e p e r i o d i c i t y .

66

Furthermore, to accomplish the objectives laid out at the beginning of

this section, a simple, compact method of representing the schedule must

be available.

F. Schedule " "" Representation and Notation

A convenient notation is needed that allows representation of a

task schedule in a concise, easily derived, and readily interpreted form.

One such approach is the adoption of a notation resembling that of reg-
ular expressions. The notation and interpretation of this formalism has

been modified and expanded to accommodate the SIFT scheduling requirements.

The following notational conventions have thus far been adopted:

Symbol

r Ii

Interpretation

The parentheses enclose a sequence of tasks or sets
thereof ,+ separated by commas, that are to be exe-
cuted in sequence. The lrnl' superscript indicates
that the event sequence defined within the expression
is to be repeated n times and then terminated. The
asterisk superscript means that the expression is to
be repeated from left to right until externally termi-
nated. Note that the asterisk may not be used more
than once in a given expression and if used, must
qualify the outermost parentheses. Each task is
allocated a time slot equal to the maximum time
required for normal execution (extended to provide
a safety margin).

The square brackets enclose tasks, or expressions
containing sets of tasks, separated by commas. Only
one of these elements is to be selected for scheduler
processing each time this expression is encountered.
Items are selected sequentially from left to right in
turn as the expression is encountered, such that for
n-items, one task for each of these n-items will have
been executed after n-iterations through this expres-
sion. Again, cycling wraps around to the first

'Clearly the Task Dispatcher in the Local Executive must run following
each task execution to refer to the schedule in effect and to determine
the next task to be executed. Likewise, the clock routine must be run.
We assume that these small, fixed-length blocks of instruction can be
treated as though they were part of each task rather than being explic-
itly included as separate tasks. This approach sacrifices nothing
technically but greatly simplifies the representation.

67

A i n t e g e r

[I j

e lement . The s u p e r s c r i p t i n d i c a t e s t h a t t h i s e x -
p r e s s i o n i s to be r epea ted i-times a t t h a t p o i n t
i n t h e s c h e d u l e .

The A i n d i c a t e s a n i d l e o r u n a l l o c a t e d p r o c e s s o r t i m e
b l o c k w h e r e t h e i n t e g e r i s t h e a v a i l a b l e t i m e i n
microseconds. This may b e u s e d t o e x e c u t e i r r e g u l a r
t a s k s o r t a s k s t h a t are s o i n f r e q u e n t o r r e q u i r e so
much processor t i m e tha t they mus t be p reempted a
number of times t o a l l o w m o r e - f r e q u e n t t a s k s t o r u n .

S u b s c r i p t s i n d i c a t e t h e p e r i o d i c i t y i n m i l l i s e c o n d s
of a given i t e m i n a g iven schedul ing express ion .
These are used for convenience and need not be
p r e s e n t .

Examples of t he app l i ca t ion o f such a n o t a t i o n are shown i n F i g u r e V-2.

Also shown i n t h i s f i g u r e are a l te rna t ive l ink-connected d iagrams and

the long forms of these expressions.

Bas ica l ly , the convenience o f the modi f ied regular -express ion for -

m a l i s m i s t h a t i t g r e a t l y f a c i l i t a t e s t h e d e r i v a t i o n of a schedule , as

w e l l as i t s s to rage and execu t ion , wh i l e t he g raph ica l r ep resen ta t ion

a ids in the comprehens ion of a completed schedule.

G. Sample Schedule Derivation

Us ing t he t echn iques d i scussed i n t he p rev ious s ec t ion , a sample

schedule i s now d e v e l o p e d u s i n g t h e t a s k s i n t h e L a n d i n g F l i g h t P h a s e .

T h i s p h a s e r e c e i v e d a t t e n t i o n s i n c e it demands more system resources

than do o the r ope ra t iona l phases . The d a t a r e q u i r e d f o r s c h e d u l i n g are

t h e t a s k p e r i o d i c i t y a n d t h e t a s k m o d u l e e x e c u t i o n t i m e . The step-by-

s tep development of the sample task schedule i s shown i n F i g u r e V-3,
a n d t h e c o r r e s p o n d i n g a l t e r n a t i v e r e p r e s e n t a t i o n i s g i v e n i n F i g u r e V - 4 .

The procedure used for der iv ing such a schedule i s :

L e t N = t h e number of tasks ,

F o r t h e j th task , (j = 1, . . . N) , l e t

= t h e p e r i o d i c i t y (i n m i l l i s e c o n d s)

e = t he execu t ion t i m e (in microseconds)
j

68

The flowchart given in Figure V - 5 describes the procedure for deriving
the schedule expression.

SCHEDULE ALTERNATE
EXPRESSION REPRESENTATION INTERPRETATION

~~

(A,B,c)*

(A ,B ,A)*

A

I

I
A

I

I

I
A

B

A

B

A

n
B k j

A.B.C.A.B.C. A .

AB. A.A.B. A

A.B. A,A,C,A.B. A , . . .

FIGURE V-2 SCHEDULE REPRESENTATION EXAMPLES

In representing the schedules, we can use a convenient shorthand
notation in which we define clusters of tasks according to the scheme

illustrated in Figure V - 4 . The total storage required to represent a

schedule can be greatly reduced, as can be seen by comparing the cluster

representation of Figure V - 4 with the longhand expression illustrated in
Figure V - 3 .

6 9

TASKS?

c 1

LE

A3

A4

88

GE

"-
A 8

89

8 3

~

ASSIGNED
PERIODICITY

(MILLISEC)

1.5

1.5

3.0

6 .O

60.0

180.0

""

30 .O

120.0

180.0

EXECUT)ON TIME
WSEC)

62

100

116

688

1124

400

""

5134

8000

1600

EXPRESSION

(THIS SET OF TASKS WILL REQUIRE PREEMPTION,
AND THE TASKS ARE LOGGED IN A SEPARATE
EXPRESSION IN ORDER OF INCREASING PERIOD
SIZE .)

fTha" tasks are allocafmd in fha ordar of docramsing itoration r a t a . axcmr for thola tasks for which the

a r u u f i o n rima aqualmd or arcdmd the pariod tor tha most fraquantly axacufmd tasks. Thew tasks raauire

p r m p t i o n and are assignmd fo an expransion wparata from fhaf for fhe main nchdula.

$Assumad processing rate of 0.5 MIPS

FIGURE V-3 SAMPLE SCHEDULE DERIVATION FOR THE LANDING FL IGHT PHASE

70

c1
I

1
LE

A3

Y""""-"-

w-------- -7 A4. / \ """"- Z

/ l1 2 7 / \ Q

v - - - - - 7 ------ \ G E
A /

c 1

I

I
LE

A 1338

NOTE: Clusters may be defined in increasingly greater detail:

x = [Y,Zl V = (G E . A l 2 8)

Y = (A4.W) z = [A I Z I S ~ ~ , U I
w = [A52829.Vl U = (88 , A94)3

FIGURE V-4 ALTERNATE SCHEDULE REPRESENTATION

There are two procedures t ha t need fu r the r d i scuss ion . The f i r s t

i nvo lves t he r eason beh ind choos ing success ive mu l t ip l i c i ty f ac to r s

r a t h e r t h a n f a c t o r s b a s e d on the " lowes t common denominator." It i s

i n d e e d t r u e t h a t t h e la t ter approach would lead to an accep tab le s ched-

u l e . However, t h e i n t e n t i o n h a s b e e n t o d e r i v e a s c h e d u l e d e s c r i p t i o n

t h a t was conc i se and s imple . Wi th th i s in mind , examining the in i t ia l

s tages of schedule development , one writes a s imple expres s ion w i th a

pe r iod as b i g as t h e s h o r t e s t o f t h e t a s k s . One t h e n a s s i g n s p o r t i o n s

of the remain ing t i m e b lock t o success ive t a sks . In t he c i t ed example

71

I I I N I T I A L I Z E

ORDER TASKS BY Pj
FROM SHORTEST TO

LONGEST

WITHIN Pi, ORDER
FROM SHORTEST TO
LONGEST ej, SET k = j

+
ROUND Pj + 1 DOWN TO

NEAREST MULTIPLE
OF Pk 1

SET k TO k - 1

FOR THE SHORTEST
PERIOD:

SET T~ = p1 x 103 psec
THEN, AT = T~ - Zs ej

Number of tasks:

Tasks:

Period of task:

Execution time:

Subsets of task:

N
j = 1,2, . . . N

P. (msec)

ej (psec)

s = number of tasks j ,
j + 1 . . . having the
same period (Pi)

1

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART

72

Q
SPLIT AT

NEXT Pi - INTO 2
BRANCHES

1 1
REPEATING ALL LAST ELEMENT:

Cod.: I S I AT,,, = AT - I: ej

+
Pi + s -1 * AT,,

INSERT TASKS:
AT - pi,pi + 1. . . .

v

I GET 1ST AT > ai
j = j + s

+
Pi + s -1 * AT,,

INSERT TASKS:
AT - pi,pi + 1. . . .

t

I GET 1ST AT > ai
j = j + s

STORE TASK AT
END OF LIST FOR

PREEMPTIVE
ALLOCATION

(MAY BE BAD
ROUNDING

SELECTION)

CREATE NEW FORKED
CYCLE, SET

M Pi'Pcxprcslion
7

1
SET OE + l [P ~ , P ~ l , . . . IP,.ATFIJ OLD EXPRESSION
AND AT = A T F FOUND ABOVE, THEN OE BECOMES

[(OEIM - 1, ([P,.P, I, . . . [Pm.Pi.ATF - Pi) l I I

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART (Continudl

73

I COLLECT SIMILAR
EXPRESSIONS FOR
SIMPLIFICATION

COLLECT BLOCKS
OF ATS AS POSSIBLE

AND DEVELOP ALTERNATE
DIAGRAM

APPEND PREEMPTED
MODULES AT END
OF EXPRESSION

FIND SHORTEST PERIOD
Abort: WITH UNASSIGNED AT,
Inadequate STORE AS PShort SET j 1
Schedule Time
Available

ei - FIND

WITH UNASSIGNED AT

SET e. preempt

NEXT SHORTEST PERIOD

1 Yes

FIGURE V-5 SCHEDULE DERIVATION FLOWCHART (Concluded)

74

t h e t o t a l e x p r e s s i o n h a d a p e r i o d i c i t y o f twice t h e smallest per iod . We

t h e n p a r t i t i o n the a v a i l a b l e t i m e b l o c k s (t h e As) t y p i c a l l y i n t o two

subexpressions, only one of which i s executed each t i m e t h e e x p r e s s i o n

i s processed. These subexpressions w i l l t y p i c a l l y h a v e t h e i r own A

t i m e b locks as e lements . Note tha t the per iod of these e lements i s a

m u l t i p l e of t h e p e r i o d of i t s parent expression. Thus as each t a sk i s

added t o t h e e x p r e s s i o n , a dec is ion mus t be made as t o which A t i m e

b l o c k s h o u l d b e p a r t i t i o n e d t o accommodate t h e t a s k . I f i t i s p o s s i b l e

to t ake advan tage o f t he exp res s ion hav ing t he l a rges t pe r iod a l r eady

ass igned , by u s i n g t h e A t i m e b lock r ema in ing w i th in t ha t exp res s ion ,

t hen t he embedded expres s ion h i e ra rchy i s g r e a t l y s i m p l i f i e d by not

p r o l i f e r a t i n g many new d i s j o i n t s u b e x p r e s s i o n s w i t h new p e r i o d i c i t i e s .

I n a d d i t i o n , t h i s c h o i c e of t h e A t i m e b l o c k l e a d s t o more e f f i c i e n t u s e

of a v a i l a b l e A t i m e b locks , l eav ing l a rge r time blocks unfragmented and

who le.

The second procedure deals with the use of remaining time blocks

t o s a t i s f y t h e n e e d s o f t a s k r e q u i r i n g p r e e m p t i o n . It i s assumed t h a t

each o f t hese t a sks i s run t o comple t ion be fo re ano the r i s s t a r t e d . Here

la rge cont iguous t i m e b l o c k s t h a t are m a i n t a i n e d i n t a c t and belong t o

t h e s h o r t e r p e r i o d s make t h e p r e e m p t i o n t a s k a n a l y s i s much more s t r a i g h t -

forward . This a l lows use o f very regular t i m e i n t e r v a l s t o v e r i f y t h a t

t h e p e r i o d n e e d s c a n b e s a t i s f i e d f o r t h o s e p r e e m p t e d t a s k s i n - t h e w o r s t

case of a l l t a sks r equ i r ing p rocess ing s imul t aneous ly . Fo r example , i n

t he s ample s chedu le , i f a l l t h ree p reempt ive t ype t a sks came d u e f o r

execut ion a t t h e same t i m e , t h e r e ar.e A t i m e blocks of 1338 psec avail-

ab le eve ry 3 millisec. This means t h a t by 30 millisec (the pe r iod of

the mos t f r equen t t a sk) , t he re are 13,380 psec ava i l ab le . S ince a l l

t h r e e t a s k s r e q u i r e a t o t a l e x e c u t i o n t i m e of.l4,734 p s e c , i f w e used no

o t h e r A t i m e b l o c k s i n t h e e x p r e s s i o n , A8 and B9 would have been executed,

and B3 c o u l d b e s t a r t e d when A8 came due f o r e x e c u t i o n a g a i n . I f w e

then examine the longest consecut ive sequence of tasks that could occur

before . a A t i m e b lock came a v a i l a b l e , i t could be C1, LE, A 3 , B8, C1,

LE, which consumes a t i m e b lock of 1564 psec. Then i n t h e w o r s t case,

i f t h i s s equence occu r red a t t h e t i m e the th ree p reempted tasks needed

75

execut ion , a l ead t i m e i n s c h e d u l i n g t h e i r e x e c u t i o n a h e a d o f t h e i r

r e q u i r e d p e r i o d i c i t y t o a s s u r e n o s c h e d u l i n g p r o b l e m i n t h i s i n s t a n c e

c a n b e c a l c u l a t e d . It i s d e s i r e d t o e x e c u t e A8 p r i o r t o t h e o n s e t o f

t h i s "no b r e a k " s i t u a t i o n . Then it should be scheduled a t :

M= T i m e No A + Exec Time A8 = 6.7 mill isec = 23% Of pe r iod

Hence, i f t h e p e r i o d of t h i s t a s k i s decreased by 23% f o r s c h e d u l i n g

purposes , then the per iod a l l t h r e e t a s k s s h o u l d b e s a t i s f i e d i n t h i s

w o r s t - c a s e s i t u a t i o n . A similar a n a l y s i s c a n b e c a r r i e d o u t on t h e o t h e r

p r e e m p t e d t a s k s . A d d i t i o n a l c o n s i d e r a t i o n o f c r i t i c a l i t y class and

m i s s e d i t e r a t i o n s may weaken t h i s r e q u i r e m e n t .

H. Conc Ius i on

I n summary, then , methods for de te rmining the requi red number of

processor memory u n i t s h a s b e e n d e s c r i b e d and a l l o c a t i o n o f t a s k s c a n

be readi ly performed. Furthermore, a schedule der iva t ion method has

been presented tha t could be per formed on- l ine . However, a l l normal

f l i g h t s c h e d u l e s wou ld be bes t s to red i n a r egu la r exp res s ion and

invoked as requ i r ed . Th i s i s because t he de r iva t ion a lgo r i thm wou ld

requi re more execut ion t i m e and da ta access t han would t h e retrieval

of s tored schedules . While c r i t i c a l t a s k s w i l l b e p a s s i v e l y a l l o c a t e d ,

t h e r e w i l l be ins tances where i t may b e n e c e s s a r y t o d e r i v e a new

schedule . A method has been desc r ibed t ha t cou ld be r ead i ly imp le -

mented. I f t a s k s w i l l revert t o p i l o t c o n t r o l , t h e n t h e y n e e d o n l y

b e d e a c t i v a t e d d u r i n g r e c o n f i g u r a t i o n . T h i s e n h a n c e s t h e c r i t i c a l i t y

o f t he d i sp l ay s c reens t o t he sys t em.

A s t o s chedu le s to rage , t he r egu la r exp res s ion fo rma l i sm can

c l e a r l y b e mapped i n t o a compact s t o r a b l e s t a c k o f t a s k s w i t h a p p r o -

p r i a t e d e l i m i t e r s a n d f l a g s . T h i s would l e a d t o a way t o s t o r e t h e

s c h e d u l e s b o t h e f f i c i e n t a n d u s e f u l .

A s i m p l e r , m o r e v i s u a l s c h e d u l e r e p r e s e n t a t i o n h a s a l s o b e e n

der ived tha t a l lows for ready comprehens ion of the t ask execut ion as

a f u n c t i o n o f time a n d t h e p e r i o d i c i t y o f i s o l a t e d t a s k s e q u e n c e s .

76

Lastly, the schedule derivation is such that preemption is required

for only a subset of the tasks, namely those with exceptionally long
execution times that encroach upon the time periods of the more fre-

quent tasks, and the period of these preempted tasks is verified. This

concludes a derivation of a suitable schedule representation for SIFT.

REFERENCE

1. R. S. Ratner, E. B. Shapiro, H. M. Zeidler, S. E. Wahlstrom,
C. B. Clark, and J. Goldberg, "Design of a Fault-Tolerant
Airborne Digital Computer," Vol. II--Computational Requirements
and Technology, Final Report. NASA CR-132253, 1973.

77

I

VI HARDWARE DESIGN

A . Bus Interconnection ~ Network

1. Introduction

The purpose of the bus interconnection network in the SIFT

computer is to provide communication between each processor (main or I/O)

and all memory units, except possibly the single memory unit already

connected directly to that processor by a high-bandwidth link. This

communication could be established with a separate connection between all

processor-memory pairs. However, since only a few of the total number of

possible communication paths would ever be in use at the same time, a
multilevel interconnection network, similar to those employed in telephone

systems, should be considered in the hope of achieving a net saving in
equipment. A multilevel realization may turn out to have some desirable
fault-tolerance features as well. A two-level arrangement having four to
six intermediate busses was proposed in the original SIFT design concept.

In this section, some alternative designs for the interconnec-

tion network are explored. Comparisons are made between a single-level

network of direct connections (no busses), a two-level network (single

set of busses), and a three-level network (a cascade having two separate

sets of busses). Bit-serial, byte-serial, and all-parallel data transfer

modes are evaluated. The principal cost measures used for these compari-
sons of the several cases are:

g or G = number of equivalent NAND gates, a measure of
hardware complexity.

t or T = number of terminals.

d or D = number of clock cycles of delay for a full memory
access.

Lower-case letters apply to a single module or unit, and upper-case

letters to the grand totals for the entire network. Other important but
less quantitative criteria are:

79

0 The degree to which the final network can be conve-
niently modularized into MSI or LSI semiconductor chips,
either custom designed or commercially available.

0 The complexity of calculations needed to generate
the routing codes for the two- and three-level net-
works.

0 Algorithms required for checking and diagnosis of the
interconnection network to achieve the desired degree
of fault tolerance.

Typically about half of the processors will be 1/0 microproces-

sors, rather than main processors, and their memory units will be corre-

spondingly smaller. They may not need the full number of address and

data-word bits, and communication paths will probably not be required

between each microprocessor and the other microprocessor memories. How-

ever, the savings in time and equipment resulting from these simplifica-

tions are not expected to be great and have therefore been neglected at

the present stage of the design.

The main results of this analysis are expressed in Figures

VI-7 and VI-8, which are described in detail in the following section.

2. Design Alternatives

Figure VI-1 shows the interconnection network within its imme-

diate context in the SIFT computer. Its overall function is to provide

bilateral communication paths between a set of p processors and a set of

p memory units. Requests normally originate with a processor, which

injects onto the forward connection the number of the memory unit (M)

with which it wishes to communicate, bus routing information (B) as
appropriate, and the address (A) within the memory. The return connec-
tion carries a data word (W) from memory, or else a single acknowledg-

ment digit .

80

DIRECT HIGHCAPACITY
I 1 CONNECTION

FIGURE VI-1 INTERCONNECTION NETWORK

The following list gives the principal independent parameters

and their expected ranges:

Parameter Minimum Typ ica 1 Ma x imum

p = number of 9 12 18
processors =
number of memories

b = number of 3
simultaneous paths
needed (= number of
busses for 2-level
case)

4 6

nw = number of bits 16 24 32
in data word
na = number of bits 16 20 24
in memory address

The number of bits needed for memory selection and for bus selection can

be derived from p and b, respectively, assuming a convenient coding.

81

Three possible interconnection schemes are shown in Figure VI-2;

switching unit S in this figure is assumed to be capable of making one-

to-one connections between its left-hand terminals and its right-hand

terminals in all (or almost all) ways--in the fashion of a crossbar, for

example. The quantity (5 designates the total number of simple switches

that would be required if each path through every switching unit were

provided by a separate switch. (The subscript designates the number of

levels in the network.) In Figure VI-2(a), for example, we have

O1 = p(p - 1). (Recall that a network connection from processor k to
memory k is not needed.) The two-level arrangement in Figure VI-2(b)

reflects the assumption that no more than b connections are ever needed

at the same time. The three-level network of Figure VI-2(c), to be

described in detail later, also has the flexibility to provide as few as

R

I P

(c) u3 = p q (2 + E
s2

FIGURE VI-2 POSSIBLE INTERCONNECTION SCHEMES

82

i P '

b < p pa ths , a t a s a v i n g i n c i r c u i t c o m p l e x i t y . O t h e r schemes having

more l e v e l s are a l s o p o s s i b l e , b u t t h e s e t h r e e a l t e r n a t i v e s w i l l be seen

to be the mos t compet i t ive for p resent purposes .

The se t -up of the pa ths in the in te rconnec t ion ne twork mus t be

e x e c u t e d i n a sequence of steps. F i r s t , a p r o c e s s o r i n i t i a t e s a r e q u e s t

i n t he fo rm (B, M y A) , where B c o n s i s t s o f 0, 1, o r 2 bus numbers, depend-

ing on the number o f l e v e l s ; M i s the memory number; and A is the addres s

w i t h i n t h a t memory (job number and l o c a l a d d r e s s) . T h i s r e q u e s t i s s e n t

t o t h e f i r s t r e c e p t o r - - e i t h e r a memory u n i t [F i g u r e V I - 2 (a)] o r a bus

[Figures VI-2(b) and VI-2(c)] . Each o u t p u t c o n t r o l l e r C of each receptor

cont inuous ly scans a l l r e q u e s t l ines i n c i d e n t upon i t whenever i t is n o t

busy holding a connect ion. When the scanning is s u c c e s s f u l , t h e r e c e p t o r

en te r s t he busy s ta te and c loses t he connec t ions fo r t he fo rward t r ans fe r

of the address and next bus (i f any) and for the reverse t ransfer of d a t a .

A t t h e n e x t l e v e l , t h e same a c t i o n is repea ted by the succeed ing r ecep to r .

A t t h e f i n a l level (1 , 2 , o r 3) , t he add res s A i s handled by the memory

u n i t i t s e l f .

Ac tua l t r ans fe r o f da t a (and la ter release o f e s t ab l i shed pa ths)

occurs somewhat d i f f e ren t ly , depend ing upon t h e mode of b i t communication

through the network. For para l le l t r a n s f e r , t h e memory addres s A arrives

a t the memory u n i t c o i n c i d e n t w i t h t h e d a t a r e q u e s t . The r e t u r n of t h e

d a t a word W au tomat ica l ly s igna ls comple t ion of the opera t ion . The re-

ques t is then removed by the p rocesso r , a l l g a t e s a l o n g t h e p a t h are

opened , and each cont ro l le r is released from the busy s ta te and resumes

scanning . In the case o f serial t r a n s f e r , r e c e i p t of a r e q u e s t a t t h e

memory u n i t t r i g g e r s t h e r e t u r n of an acknowledgment d i g i t t o t h e s o u r c e

processor . This p rocessor then spews for th i t s stream o f a d d r e s s d i g i t s ,

on completion of which the memory u n i t r e t u r n s i t s stream of data-word

d i g i t s . Release of t he pa th t hen fo l lows as i n t h e p a r a l l e l case. Trans-

f e r t o a n d f r o m . I / O p r o c e s s o r s t a k e s p l a c e i n a n i d e n t i c a l b u t p o s s i b l y

abbreviated manner, since cormnunication may be needed i n o n l y one r a t h e r

t h a n b o t h d i r e c t i o n s .

83

3 . Parallel Transfer

It should be clear from this description that each controller
in each receptor (memory unit or bus) requires two parts, a scanner and

a switch. The manner in which these two parts function together is shown

in block diagram form in Figure VI-3 and as a logical circuit in Figure

VI-4, for the single-level case and parallel mode of transfer.

In the functioning of each scanner (Figure VI-4), a (p - 1)-

stage unary counter cycles continuously as long as no request is received

on one of its memory select lines M. The first such request that is

encountered stops the counter, and the counter state m and busy signal

are passed on to the switch.

Each switch is a simple two-way multiplexor for connecting one

of the p - 1 processors to the corresponding output lines. Thus it has
(P - 1) (na + n) left-hand terminals, which connect to the processors, W
and n + n right-hand terminals, which connect to the memory proper.

The gate realization is straightforward. The complex of lines at the

left side of Figure VI-4 corresponds to the nearly complete crossing of
connections within S in Figure VI-2(a). Note that the total of p(p - 1)
M-lines ties directly to the scanners, p - 1 of them to each scanner.
The other lines are paralleled to or from the controllers.

a W

a. One- and Two-Level Networks

The cost measures for a single controller may now be

written down directly for the single-level case. For the scanner we have

gsc

tsc

= 12(p - 1) + (p - 1) + 2 + 6 = 13p - 5
equivalent gates

= 2p terminals (excluding clocks and power)

d = 1, d = p - 1 clocks;
and for the switch, letting n = n + n

scmin scmax

a W’

gsw = np gates

= (n + 1)p terminals sw
dsw = 0

84

TolFrom
Processor 1

W

Memory Select Cable
\
\
\

Address Cable

Data Word Cable

-I s c T E R

M

TolFrom
Processor

P

A -
SWITCH

MEMORY

.

.

- " -
p Controllers

FIGURE VI-3 SCANNER AND SWITCH FUNCTIONAL BLOCK DIAGRAM

85

FIGURE VI-4 SCANNER AND SWITCH LOGIC CIRCUITRY

86

We have assumed here a c o s t of 1 2 ga t e s pe r s t age fo r t he coun te r , and

6 e q u i v a l e n t g a t e s f o r t h e s i n g l e - d i g i t d e l a y . (T h e s e c o s t s a r e a l l

a p p r o x i m a t e , b u t t h e f i n a l r e s u l t s do n o t d e p e n d c r i t i c a l l y upon them.)

Wired-OR o u t p u t g a t i n g i s assumed f o r t h e d a t a - w o r d l i n e s r e t u r n i n g t o

the p rocessors .

~ I n t h e t w o - l e v e l c a s e , shown i n F i g u r e V I - 5 , the bus and

memory r e c e p t o r s a r e t h e same as in t he one - l eve l ca se excep t fo r t he

d i f f e r e n t numbers o f inputs and ou tputs . In par t icu lar , the number of

scanned posi t ions increases f rom p - 1 t o p i n t h e f i r s t leve l and reduces

from p - 1 t o be in the second leve l . Thus ,

Level 1

gsc
t = 2 p + 2

= 13p + 8

s c (b of these)

d = l t o p s c

Level 2

gs c = 13b + 8)
t = 2 b + 2 (p og these)

= l t o b
s c i d s c

The number of b i t l i n e s t o be switched increases from n t o n + p i n t h e

f i r s t l e v e l , i n o r d e r t o i n c l u d e t h e r o u t i n g d i g i t s B y bu t r ema ins a t

the va lue n in t he s econd l eve l . Thus

Level 1

SW
= (n + p + 1) (p + 1)

d = O
s w

Level 2

gsw

d s w

= n(b + 1)

= (n + .1) (b + 1)

= o
sw

(b of these)

(p of these) . ,

, .

87

Note that the circuit arrangements presented in Figures

VI-3 and VI-5 constitute a simplification over that described previously

in the Project 1406 Final Report. Specifically, memory-unit selection
is done here with a unary rather than a binary code. This choice presumes

that each processor requests each individual memory unit with a separate

line. The previous DATA REQUEST line can then be combined with this line.

If the memory units were selected with a more compact binary code having,

say, np digits, where n < p, then the number of bit lines to be switched
in the first level would be reduced slightly in the two-level case

P

[gsw = (n + n,)p], but a more costly scanner must be used [g M 13p + sc
15 + n (p + ll)]. We conclude that the unary code leads to a more eco-

nomical design.
P

The grand totals may now be calculated. Summing over all

p memory-unit controllers, the single-level case yields

G~ = p(13p - 5) + (n)p = p (n + 13) - 5p 2 2

T1 = 2p + (n + 1)p = p (n + 3) 2 2 2

- -
, Dlmin 3, Dlmax = p + l ;

while the two-level case yields

G2 = b(l3p + 8) + (n + p)b(p + 1) + p(13b + 8) + n(b + 1)p
= (n + 8) (2bp + p + b) + bp(p + 11)

T2 = b(2p + 2) + b(p + l)(n + p + 1) + p(2b + 2) +
p(n + 1)(b + 1)

= (n + 3)(2bp + p + b) + bp(p + 1)

Note that in both cases two clocks have been added to the total transfer

time for acceptance of the memory address and return of the data word.

G and T designate the total number of gates and terminals, respectively,
for all controllers, assuming one scanner module and one switch module

in each controller.

88

"
L

SWITCH . I

Eb A

W
4

-
b Level 1

.

.

Controllers

3
. .

A
I

M SCANNER - P

W SWITCH W
" P 4- MEM

P -
p Level 2
Controllers

FIGURE VI-5 TWO-LEVEL NETWORK BLOCK DIAGRAM

b. The Three-Level Network"

The general form of a three-level interconnection network

was shown in Figure VI-2(c) [Ref. 1 1 . In the first level, the set of p

network inputs is handled s at a time, by qp/s controllers in p/s groups

of q each. Each has s inputs. The second level has qp/s controllers,

now in q groups of p/s each. Each has p/s inputs. The third level,

antisymmetrical to the first, consists of p controllers in p/s groups of

s each. Each has q inputs. An example for p = 9, s = q = 3 , is given

in Figure VI-6.

p = 9 , s = q = 3

F I G U R f VI-6 EXAMPLE OF A THREE-LEVEL NETWORK

The parameters q and s should be chosen to optimize the

3' design; we use here the cost parameters G T3, and D The values of q

and s measure the richness of interconnectability, through the number b
3'

of simultaneous parallel paths provided, just as in the two-level network.

First, s must be selected in the range 2 S s S p/b for the network of

*
The calculations reported earlier in Technical Memo No. 5 contained an
algebraic error, which affected the numerical results and the compari-
son of the three-level case with the others. This error has now been
corrected and the conclusions modified accordingly.

90

Figure VI-2(a) to be meaningful. To achieve b simultaneous paths we need

q = ~ i f s S b a n d q k b i f s > b .

Telephone switching theory provides several directly appli-
cable definitions and results.

A rearrangeable network is one that provides all possible

one-to-one input-output connections, just as assumed for the switching

unit S itself; i.e., it is a permutation network. In general, however,
if some of these connections have already been established along certain

paths, it may be necessary to reroute them in order to set up additional

connections. A nonblockinq network also has full permutation capability,
but in this case such rerouting is never necessary, regardless of the
order and the particular routing with which prior connections are set up.
These two classes of switching networks are useful theoretical models for

telephone switching, but are never used in practice because of their high

cost, and because only a small fraction of all telephones are ever in use

at the same time.

The parameters of the three-level network are constrained

as follows :

0 For a nonblocking network, q 2 2s - 1.
0 For a rearrangeable network, q 2 s .

0 For most telephone networks, q << s .

For the bus interconnection network, it has been assumed

sufficient to have as few as b < p simultaneous connection paths. Con-
sequently, a rearrangeable or nonblocking capability is not needed;

however, such capability may be an asset if it can be achieved at a small

additional cost--a definite possibility, since the utilization ratio b/p

is larger here than in telephone practice.

Cost parameters for the scanners and switches in the indi-

vidual levels may now be readily calculated, just as was done in the two-

level case. For parallel data transfer: *

*Actually, a scanner-having only two positions is somewhat less complex
than the above expressions indicate. The value gsc = 21 has been used
in this case instead of the value given by these formulas (gsc + 3 4) .

91

Level 1

gsc

tsc

= 13s + 8
= 2 s + 2

d = l t o s sc

gSW

tsw

+ (n + + q) (s + 1)
= (n + E + q + l)(s + 1)

S

d = O sw

Level 2

gsc

tsc

= l$+ 8
S

= 2E+ 2
S

d sc =lto:

gsw

tsw

dSW

= (n + E) (t + 1)

= (n + 2 + 1) (E + 1)
S

S S

+ o

Level 3

gsc

tSC

= 13q + 8
= 2 q + 2

d = l t o q sc

gsw = n(q + 1)

tsw = (n + 1) (q + 1)

d = O sw

(y of these)

I

> (y of these)

(p of these)

Summation of these individual contributions leads to com-

plex expressions for G and T3. Those f o r T are identical in form and

similar in value to those for G3, differing only in some of the constants.

Consequently, it will be sufficient to deal with G only, in optimizing

q and s in terms of p, b y and n.

3 3

3

92

F i r s t , n o t e f r o m t h e c o n t r i b u t i n g terms tha t the depen-

dences on q and s are s t r i c t l y p o s i t i v e and i n v e r s e , r e s p e c t i v e l y , so t h a t

G w i l l be least when q i s minimized and s is maximized, subject only to

t h e c o n s t r a i n i n g i n e q u a l i t i e s c i t e d a b o v e . Two cases mus t be d i s t i n -
3

g u i s h e d . I f p 5 b , t hen w e have q = s 5 p/b 5 b . Se l ec t ion of t h e

l a r g e s t p o s s i b l e v a l u e o f s g ives s = p / b , y i e l d i n g

z

G3 = p [p + (2n + 27)bl /b + p(p + 3n + 24) + 2 2

pb(b + n + 1 5) .

2 On t h e o t h e r h a n d , i f p > b , t hen we have q = b 2nd b < s 5 p/b. The

maximum value of s is t h e same, y i e l d i n g

G = b + (n + 16)b + 2(n + p + 8) b + 2(n + 13)pb + 4 3 2
3

p (n + 8) .

The cor responding va lues o f D are

D3min

3

= 5

($ + b + 2 w h e n p 5 b 2

4 . B i t -Se r i a l T rans fe r

For serial implementation of t h e c o n t r o l l e r , t h e s c a n n e r h a s

t h e same c o s t s , w h i l e t h e number of b i t l i n e s i n t h e s w i t c h is reduced

from n t o j u s t 3 : a s i n g l e a d d r e s s l i n e , a n acknowledgment l i n e , and a

data-word l ine. However, t h e time r e q u i r e d f o r a c t u a l t r a n s f e r is now

inc reased by n. Thus,

gsw = 3P

tsw = 4P
dsw = n

For a l l p memory u n i t s i n t h e s i n g l e - l e v e l case, then

93

2 2 2
Tl = 2p + 4p = 6p

lmin = n + 3, Dlmax
= n + p + l

For t he two- l eve l ca se , a s suming pa ra l l e l t r ansmiss ion o f mem-

o r y s e l e c t i o n l i n e s t h r o u g h t h e b u s c o n t r o l l e r s , b u t s e r i a l t r a n s f e r o f

a l l a d d r e s s e s a n d d a t a ,

G2 = b(l3p + 8) + b(p + 1) (3 + p) + p(13b + 8) + p(b + 1) 3

2
= b(p + 33p + 11) + l l p

D2min - n + 4, D2max = n + p + b = 2 -

For the th ree- leve l case , t ak ing s = p / b and e i t h e r q = s o r

q = b, a s b e f o r e :

G, = p (p + 33b)/b + p(p + 33) + bp(b + 18) f o r p S b , 2 2 2

= b + 19b3 = 2(p + 1 l) b + 32pb + l l p f o r p > b . 4 2 2

D3min = n + 5 , D3max = * + b + n + 2 f o r p S b y b 2

= E + 2 b + n + 2 f o r p > b 2 b

I n t h e s e c a l c u l a t i o n s , i t is assumed t h a t t h e c i r c u i t r y r e q u i r e d

f o r s e r i a l i z a t i o n and p a r a l l e l i z a t i o n of addresses and data i s i n t e g r a t e d

in to t he p rocesso r s and memor ie s , r e spec t ive ly , a t no appreciable change

i n ha rdware cos t w i th in t hese un i t s . I f t h i s a s sumpt ion is n o t j u s t i f i e d

fo r t he t echno logy chosen fo r p rocesso r and memory implementation, then

t h e e f f e c t i v e v a l u e of G w i l l increase o v e r t h a t c a l c u l a t e d h e r e . R

5. Byte-Ser ia l Transfer

S i m i l a r c a l c u l a t i o n s a p p l y i f t h e t r a n s f e r is e f f e c t e d u s i n g

r = Ina/B’ + fnw/B’ success ive B-b i t by tes . Here, n -+ 2 + 1 i n G and T ,

and the de lay D i n c r e a s e s by r o v e r t h e v a l u e f o r t h e p a r a l l e l mode.
B

The r e s u l t s f o r t h e s i n g l e - l e v e l n e t w o r k become:

94

lmin = r + 3 , D = r + p + l lmax

For the two-level network:

2

2

G 2 = bp + (48 + 29)bp + (b + p)(28 + 9)

T2 = bp + (48 + 9)bp + (b + p)(2@ + 4)

D2min = r + 4 , = r + p + b + 2 2max

F i n a l l y , f o r t h e t h r e e - l e v e l n e t w o r k :

G3 = p [p + (48 + 29)b] /b + p(p + 6 8 + 27) + 2 2

pb(b + 28 + 1 6) f o r p 5 b , 2

= b4 + (28 + 17)b3 + 2(28 + p + 9)b2 + 2(28 + 14)pb +
p(28 + 9) f o r p b 2

D3min = 5 + r ,

D3max = l e + b + r + 2 f o r p < b , b 2

= ‘ = 2 b + r + 2 f o r p > b 2
b

6 . Comparative Analysis of Cost Measures

F igures VI-7(a) , (b) , and (c) d i s p l a y c o l l e c t i v e l y t h e magni-

tude of G a s a func t ion of p , b , n , and over the ranges o f in te res t o f

t h e s e p a r a m e t e r s , f o r t h e p a r a l l e l mode o f da t a t r ans fe r . These cu rves

a r e shown f o r t h e t y p i c a l v a l u e o f n = n + n = 4 4 b i t s (s o l i d c u r v e s) ,

w i t h v a l u e s f o r t h e minimum and maximum (n = 32 and n = 56, r e s p e c t i v e l y)

des igna ted by do t t ed cu rves fo r t he two- l eve l ca se . (The o t h e r s are very

similar .)

a w

All of t he fo rmulas fo r T are so similar i n form and relative

v a l u e t o t h e c o r r e s p o n d i n g o n e s f o r G t h a t t h e r e is no need t o d i s p l a y

t h e i r values s e p a r a t e l y . It may be s a fe ly conc luded t ha t t he r anges o f

op t ima l i ty o f des ign pa rame te r s based on t he t o t a l number T of scanner

and swi tch t e rmina ls are v e r y n e a r l y t h e same as those based on t he t o t a l

number G of ga tes .

95

W m

G

14,000

12,000

10,000

8000

6000

4000

2000

cc-L_L_Il, 9 12 15 18 p

t
9 12 15 18 p

(b) b = 4

9 12 15 18 p

(e) b = 6 (a) b = 3

FIGURE VI-7 GATE COSTS FOR PARALLEL TRANSFER

Reference to these figures leads to the following conclusions
for the parallel case.

For b = 4 and p large the two-level network is preferred by a

wide margin, but as b is increased or p decreased, both the one- and

three-level networks become more competitive in terms of gate cost. In
particular, the two-level network is superior to the three-level over the

entire range of parameter values of interest, and to the one-level network
as well over all of this range except when p 5 2b; however, this extreme
combination of values is very unlikely to occur in the design of the SIFT

computer. The dependence of the minimum gate cost on all.three parameters

p, b, and n is linear and nearly proportional; in fact the approximate
formula

holds within 3% over the entire range of interest. This

one to estimate quickly the effect of a change in one of
eters on the circuit complexity.

Gate costs for the seri.al mode of transfer are

formula allows
the design param-

shown in Figure

VI-A-8 for the case b = 4 . Again, the superiority of the two-level imple-
mentation is apparent.

For the typical case: p = 12, b = 4 , n = 4 4 , and B = 4 , Table

VI-1 lists maximum delay times D for 1, 2, and 3 levels and f o r all

three transfer modes. Dependence on p, n, and b is linear (where there

is any dependence at all), so the sensitivity of D to changes in these

parameters can be readily estimated.

Rmax

max

It is clear that, within each mode, the one- and three-level
networks are preferred from the standpoint of minimizing the maximum delay

time. However, the differences are only about 25% to 30% for the parallel

mode, are truly negligible for the bit-serial mode, and are in between for
the byte-serial mode.

It may be concluded that the operating speed of the intercon-
nection network is not critically dependent upon the number of levels in

the network, but (not surprisingly) depends rather critically upon whether

97

6000 t
4000

G

2000

9 12 15 18
P

FIGURE VI-8 GATE COSTS FOR BIT-SERIAL TRANSFER b = 4

the parallel, byte-serial, or bit-serial mode of transfer is employed.

In the parallel case there is a secondary dependence on the number p of
processors and number b of busses, as expressed in the equations

lmax = p + 1 , D = p + b + 2 , 2max D3max x 3 b + 2

7. Networks with More Than Three Levels-

For sufficiently large p, the costs G A and T can be reduced by

employing an interconnection network having more than three levels. This

can be done by holding q and s at small values (2, 3, or 4) and applying

recursively to each controller in the center level the one-to-three-level

transformation implied by Figures VI-2(a) and VI-2(c). For example, a

five-level network so generated from Figure VI-2(c) for p = 8, s = q = 2

is illustrated in Figure VI-9. The relevant concern here is whether such

an alternative is preferred over the two-level case for the range of

values of p likely to be encountered in the SIFT interconnection network.

R

98

FIGURE VI-9 EXAMPLE OF A FIVE-LEVEL NETWORK

The limiting situation q = s = 2 may be examined first. In this

case each of the S-units has two inputs and two outputs. The network is
the well-known Benes-Waksman arran [Ref. 21 shown in Figure VI-9 for

p = 8. This network is known to have complete permutation capability

(b = p), and for p = 2 has 2u - 1 levels and p(u - 1/2) S-units. (A
less symmetrical version has a slightly smaller number p(u - 1) + 1 of
S-units, but would probably require a more complex routing algorithm.)

Thus,

U

R = 2u - 1,
OR = 2p(2u - 1)

Each S-unit requires a pair of route-selection lines from the source pro-
cessor. At the ith-level, then,

gswi = 3[n + 2(R - i)]

Summing over all levels to get the grand total

we obtain, taking g = 21 as before, sc

gA = 6.2 (2u - 1) (n + 2u + 5) , where u = log2(p) u- 1

99

For p = 16 we have u = 4 and .k? = 7, giving G = 19,152 for n = 44 and

G7 = 5736 for the serial mode. These values are much greater than the

minimum values plotted in Figures V I - 7 and V I - 8 . The corresponding costs

for p = 8 (Figure V I - 9) are G5 = 6600 and 1 6 8 0 . These values are indi-

cated by small triangles in Figures V I - 7 and VI-8. We may conclude that

the exclusive use of 2 X 2 S-units, using as many levels as needed, gives .
rearrangeability but is more costly than all other solutions in the total

number of gates required. The delay D would also increase in these

five- and seven-level realizations, of course.

7

max

Exclusive use of 3 X 3 S-units does not lead to a fully utilized

network having > 3 levels until p = 3 = 2 7 . For p = 1 2 , however, a

hybrid five-level network for s = q = 3 can be formed by realizing each

of the three 4 X 4 S-units in the central level in Figure V I - 2 (c) in the

form of a three-level, six-element subnetwork of 2 X 2 S-units. The

final network, shown in Figure VI-10, has a total gate cost G = 1 0 , 8 6 0

for n = 44 and G = 2496 for the serial mode. Another five-level version

using 2 X 2 and 3 X 3 S-units in alternate levels has exactly the same

cost. These values are indicated by small circles in Figures V I - 7 and

V I - 8 . Again, these costs are quite high and indicate the undesirability

of increasing the number of levels above three.

3

5

8 . Modularization of the Bus Interconnection Network

The most complex scanner encountered in the previous discussions

had g = 1 3 p + 8 2 242 gates and tsc = 2 p + 2 5 39 terminals. Conse-

quently, there would be no difficulty in implementing the scanner as a

separate semiconductor module, should this be desired. The switch, on

the other hand, has a typical complexity given by

sc

gsw = (n + y) (6 + 1)
t = (n + y + 1)(6 + 1) sw

where 6 varies from 0 to p and 6 from b or s to p. Except for the serial

mode (n = 3) , then, the switch will need to be partitioned into two or

more parts to fit on any but the largest L S I modules. This may be con-

veniently done in the present instance by taking advantage of the

100

I

""""- 7

L """"" -I

FIGURE VI-10 FIVE-LEVEL NETWORK USING 2 X 2 AND 3 X 3 S-UNITS
IN ALTERNATE LEVELS

iterative form of the circuitry for the n parallel bits. Only the 6 gate
control lines (from the counter in the scanner) need be repeated in each

module, and all switch modules at the same level could be essentially the

same.

9 . Comparison of Delay Times

The maximum delay times through the interconnection network for
different values of are shown in Table VI-1.

A particularly attractive design alternative for realization

would be one in which all controllers have the same number of inputs and

outputs, so that a common module might then be utilized in all three

levels. This would result in a minimum of wasted gates and terminals,

merely those corresponding to some of the routing selection digits in

levels past the first. With reference to Figure VI-2(c), this condition

101

Table VI-1

SUMMARY OF MAXIMUM DELAY TIMES Dhax
(p = 1 2 , b = 4 , n = 44, f! = 4)

- R Parallel Byte-Serial Bit-Serial

1 13 2 4 57
2 18 2 9 6 2

3 1 2 2 3 56

2 2 requires that s = q = p/s, so that p = q = b , for the three-level net-
work. Hence ,

G3 = 3b [b + b(n + 14) + (n + 8) l 2 2

for the parallel case, and with n replaced by 3 for the serial case. Each

= 2b + b(n + 15) + (n + 8) of the 3b modules now requires g =

gates and t = t + t - p = b + b(n + 5) + (n + 3) terminals. Results 3 sc sw
for the only two cases of interest, corresponding to b = 3 and b = 4 , are

tabulated in Table VI-2 for parallel transfer (n = 44) and for serial

transfer. The network for b = 3 is shown in Figure VI-6.

2 2

23 gsc + gsw

It is immediately apparent that the modules are pin-limited

rather than gate-limited for any modern semiconductor technology. A

serial controller might fit nicely on one semiconductor chip, but the

parallel version would still need to be bit-partitioned to make this

possible. Nevertheless, this possibility is an attractive one from the

standpoint of implementation, despite the nearly double total gate cost

(small squares in Figures V I - 7 and VI-8).

If this high gate cost can be afforded, the single-level network

must be reconsidered, since all controllers are also identical in this

case:
2

G1 = p (n + 13) = 5p

g1 = p(n + 13) - 5

tl = p(n + 3)

102

Table VI-2

SUMMARY OF COSTS FOR NETWORK REALIZATION
USING ALL-IDENTICAL MODULES

Three-Level Network One-Level Network
Parallel, n = 44 Bit-Serial Parallel, n = 44 Bit-Serial

F
0 w No. of

- b E _Modules - G3 g3 - 3 t - - G3 g3 t3
"

3 9 27 6,345 247 203 1,917 83 39 4,572 508 423 1,251 139 54

4 16 48 14,400 320 259 4,560 115 54 14.512 907 752 4,016 251 96

The total number of gates required is now somewhat less, but the number

of terminals (and gates) per module is substantially greater, so more

modules would be required.

All of these alternatives are compared numerically in Table
VI-2.

10. Fault Tolerance Aspects

We follow the principle that recovery should be possible from

all single faults and from all double and most other multiple faults that

occur sufficiently far apart in time to allow a delay for the fault analy-

sis programs to identify the faulty unit and reconfigure the machine to

avoid its use.

This degree of fault tolerance can be achieved by defining and

isolating units in such a way as to limit the extent of a "single" fault.

Note that the extent of a fault is determined not only by how the domain

of improper operation propagates electrically, but also by the precision

with which the diagnostic routines are able to pinpoint the location of

the fault. For example, if these routines are so weak that a fault in A
can be narrowed down only to the combination (P ,A), then the extent of

the fault must be considered to be (P1,A) and not just (A). With refer-

ence to Figure VI-11, this ability to limit means that any one of the units

1

PI' P2' P y A1, A2, or A 3 may fail as a result of a single fault, but

FIGURE VI-11 ARRANGEMENT OF UNITS
TO ACHIEVE FAULT TOLERANCE

104

t h a t a f a u l t i n u n i t A1, for example, must never cause A of A t o become

i n o p e r a t i v e . S i m i l a r l y , a f a u l t i n P1 must never incapac i ta te P o r P 2 3‘
It is possible , though presumably less l i k e l y , f o r a f a u l t t o d e v e l o p o n

an ac tua l connec t ion pa th- - f rom P t o A fo r i n s t ance - - tha t p reven t s

communication between these two u n i t s . Such a f au l t migh t occu r w i thou t

b locking proper opera t ion of P in conjunct ion wi th A and A o r of A1

i n c o n j u n c t i o n w i t h P and P 2 . On the o ther hand , such a f a u l t m i g h t

a l s o d i s a b l e e i t h e r P o r A o r bo th . What we do i n s i s t , however , is

t h a t i f A1 mus t be dec la red fau l ty , then A2 and A3 will not be rendered

i n o p e r a t i v e by t h e same f a u l t , and i f P i s d e c l a r e d f a u l t y , P and P

are n o t a f f e c t e d .

2 3

1 1’

1 2 3’

1

1 1

1 2 3

I n terms o f t h e c o n n e c t i o n g r a p h f o r t h e u n i t s of t h e e n t i r e

compute r , t h i s cond i t ion i s e q u i v a l e n t t o r e q u i r i n g t h a t a s i n g l e f a u l t

may disable (a) any one branch, (b) any one node, (c) any one node with

an inc ident b ranch , o r (d) any two connected nodes and their incident

branch.

P rope r de f in i t i on o f wha t cons t i t u t e s a s e p a r a t e u n i t w i t h

r e s p e c t t o s i n g l e f a u l t s r e q u i r e s o n l y t h a t r e p l i c a t e d p a r a l l e l s u b n e t -

works be regarded as s e p a r a t e u n i t s , j u s t a s one would e x p e c t . I s o l a t i o n

o f t h e s e s e p a r a t e u n i t s must then proceed according t o t h e p r i n c i p l e t h a t

p a r a l l e l r e p l i c a t e d u n i t s s h o u l d n e v e r b e c o n n e c t e d t o g e t h e r i n a n y way.

A t t h e c i r c u i t level t h i s c o n d i t i o n of i s o l a t i o n r e q u i r e s t h a t

m e r g i n g l i n e s m u s t b e e l e c t r i c a l l y i s o l a t e d a t a l l p o i n t s of fan-in and

fan-out o f these rep l ica ted un i t s . This might be implemented as simply

as e m p l o y i n g r e s i s t o r s o r d i o d e s f o r i n p u t c l a m p i n g a n d f o r i n t e r u n i t

connec t ions a t a l l poin ts o f fan- in and fan-out , in o rder to p revent

p ropaga t ion o f f au l t s be tween un i t s . However, o p t i c a l c h a n n e l s o r s p e c i a l

coup l ing c i r cu i t s migh t be p re fe r r ed , depend ing upon t h e n a t u r e of t h e

actual s igna l s and t he magn i tudes o f t he f au l t p robab i l i t i e s .

To p r e v e n t t h e m o s t l i k e l y t y p e s o f d o u b l e f a u l t s (t h o s e con-

f i n e d t o s i n g l e u n i t s) f r o m b l o c k i n g f a u l t - f r e e u n i t s f r o m u s e , a n a d d i -

t i o n a l c o n d i t i o n o n t h e t h r e e - l e v e l i n t e r c o n n e c t i o n n e t w o r k s h o u l d b e

105

imposed: that all switch units should have a fan-in and fan-out of at

least three. Thus,

This requirement is satisfied by all of the realizations discussed pre-

viously.

Diagnostic routines should have no difficulty in pinpointing

the location of a fault to any switch, since this unit is purely combina-

tional and is interposed in data paths between a processor and a memory.

Thus all stuck-at and short-circuit faults will appear as errors in

address or data transmission and can be readily detected and located.

Some of the switched lines carry routing and memory selection information,
but errors in this information will also show up as data errors whenever

the wrong memory is selected. To provide more positive protection against

memory.selection errors, it may be desirable to assign replicated files

to different address blocks within the various memory units.

The scanner, while a simpler unit, operates sequentially and

must therefore be checked externally for both "do-nothing" faults and

faults that cause two otherwise nonsimultaneous actions to occur at the

same time. The former type of fault will presumably be detected by what-

ever overtime monitor is used for processor operations. The latter type

could cause small delays if a processor tries to communicate with a memory

unit through more than a single path through the interconnection network,

or it could cause data errors if a processor becomes connected to more

than a single memory unit. Both of these types of faults are readily

detected. However, the second may require some special attention in prep-

aration of the fault location routines so that the fault can be properly

localized.

11. Routing

When the number of levels in the interconnection network is two
or more, the allocation program in the system executive must contain a

routine for assigning busses or a route for each processor-to-memory access.

This routing information is forwarded to the processor as part of the

106

execution program; in effect it becomes a portion of the memory-select and

address information. However, the assignment of access routes cannot be

made independent of one another. The scheduling of all of the various

tasks must be considered, in order to avoid conflicts and delays that
would otherwise result from two processors demanding overlapping routes.

Thus, route assignment must take into account both the scheduling of tasks
and the detailed interconnection possibilities within the interconnection

network.

For the two-level network, all bus controllers connect sym-

metrically to all processors and also to all memories. Consequently,

potential routing conflicts can be circumvented by simply avoiding the

assignment of the same bus to two concurrent accesses. If the scheduling

constraints are not too severe, such an assignment might be handled by

simply rotating the assignment of busses to processors. This allocation

rule would be used until faults occur. As particular bus controllers,

processor-to-bus connections, and bus-to-memory connections are recognized

as potentially faulty and are taken from use, the assignment algorithm
would become more constrained. It could still operate on a "next avail-

able" basis, or by whatever algorithm is used for handling defective

processors and memories.

e

If the number of levels is three or more, the choices between

possible routes between processors and memories are no longer equally

preferable. As indicated previously, these interdependencies could be

completely avoided by employing a nonblocking interconnection network.
This form of network was seen above to be nearly twice as costly as a

rearrangeable network, however, and its use is probably not justified in
the present application. In view of the small number of connections

likely to be set up simultaneously, relative to the total number of pro-

cessors, routing conflicts would appear to be the exception rather than

the rule, even if a simple "next available path" assignment algorithm

were used. Telephone theory provides sophisticated algorithms aimed at
minimizing the blocking probability for average low-level use of a switch-

ing system [Ref. 11. In the present case, however, the number of proces-
sors is probably too small to make such elaborate schemes either necessary

or beneficial.
107

It seems sufficient, therefore, for the allocation subroutine
to maintain and update a simple table, which contains for each processor

(row of the table) and memory unit (column) a list of the paths that have

been provided for in the design--normally 3 or 4--and the status of each

such path: (a) fault-free and available at the moment, (b) fault-free

but busy, (c) potentially faulty, or (d) faulty. Except for the multiple
choice of routes, this table is the same in kind as must be maintained to

store the status of all units in the SIFT computer.

12. Conclusion

The foregoing analysis indicates the superiority of a two-level

interconnection network over alternatives employinp only one level or

three or more levels for virtually all ranges of parameters likely to be

encountered in the SIFT computer and for all three transfer modes, parallel,

byte-serial, and bit-serial. In terms of the various cost measures, the

two-level network is less complex in total gate and terminal counts for

all parameter ranges of interest, in most cases by a wide margin. It has
the same (or a little greater) maximum access delay.

The bus interconnection network is readily decomposed into cir-

cuit modules, although some sacrifice in gate cost can be expected if all
of these modules are to be made alike.

These conclusions are not yet based upon a reliability analysis,

one that will take into account the various fault probabilities in each

type of unit and especially failures in interunit connections, The final
design choice for the interconnectio network will depend to some extent

upon this analysis, as well as upon the scheduling algorithms and diag-

nostic strategy adopted and upon system tradeoffs involving speed re-

quirements, relative hardware costs, and the parameters assumed specified:

p, b, and n.

The principal unanswered question at this stage of the design

concerns the matter of how the controller should be realized in hardware.

No two controllers occupying similar replicated positions in the network
should share the same chip. However, most .of the controllers are

108

t e r m i n a l - l i m i t e d r a t h e r t h a n g a t e - l i m i t e d , and t h i s p o s e s a problem for

good economy o f r e a l i z a t i o n .

B . Input/Output Subsystem

1. Int roduct ion and Sunmlary

The input /output subsystem of the SIFT computer i s u s e d t o con-

n e c t t o t h e a i r c r a f t e n v i r o n m e n t . It c l e a r l y m u s t s a t i s f y t h e same kind

of r e l i a b i l i t y r e q u i r e m e n t s as the remainder o f the sys tem. In addi t ion ,

i t is h igh ly cons t r a ined by t h e c h a r a c t e r o f t h e d e v i c e s w i t h i n t h e air-

c r a f t ; f o r e x a m p l e , r e p l i c a t e d a i r p r e s s u r e s e n s o r s w i l l not produce

i d e n t i c a l l y t h e same read ings , so t h e v o t i n g on t h i s d a t a will have t o

a l l o w f o r t h i s f a c t .

The b a s i c scheme fo r t he i npu t /ou tpu t subsys t em is:

0 Crit ical senso r s are r e p l i c a t e d , and the programs
t h a t r e q u i r e t h e d a t a r e a d a l l t h e v e r s i o n s and
c a r r y o u t a vot ing procedure as w i t h a n y d a t a t h a t
are read .

0 Crit ical ac tua tors mus t be rep l ica ted , each of
them c o n t a i n i n g s u f f i c i e n t l o c a l l o g i c t o b e a b l e
t o r e a d t h e several v e r s i o n s of t h e o u t p u t d a t a
t h a t t h e y r e q u i r e a n d c a r r y o u t l o c a l v o t i n g ,
p o s s i b l y by mechanisms similar t o t h o s e c u r r e n t l y
employed w i t h m u l t i p l e a c t u a t o r s on a i r c r a f t , e . g . ,
forced sum v o t i n g .

0 N o n c r i t i c a l s e n s o r s and a c t u a t o r s are n o t r e p l i c a t e d
b u t are connec ted t o t he sys t em in t he same way as
c r i t i ca l o n e s i n o r d e r t o p r e s e r v e t h e same f a u l t -
i s o l a t i o n r u l e s on the input /output subsys tem as are
used between processing modules.

0 The cent ra l comput ing e lements of t h e SIFT system
are i so l a t ed f rom nonc r i t i ca l s enso r s and ac tua to r s .

The manner by which the above ob jec t ives are achieved is de-

s c r ibed be low, s t a r t i ng w i th t he des ign o f a sys t em fo r c r i t i c a l sensor

and ac tua to r i npu t /ou tpu t , f o l lowed by a d i scuss ion o f app ropr i a t e s t ruc -

t u r e s f o r n o n c r i t i c a l u n i t s . The sec t ion conc ludes w i th cons ide ra t ions

o f t h e a i r c r a f t b u s s t r u c t u r e a n d t h e q u e s t i o n o f p r o b l e m s o f t h e p o s i t i o n -

i n g o f t h e l o g i c o f s e n s o r s and a c t u a t o r s a t the cen t r a l compute r o r a t

the un i t s t hemse lves .

109

2. Critical Input/Output Units

Figure VI-12 shows how critical input and output units would

be connected to the central SIFT computer system. We assume that data

to and from the SIFT system flows on a multiple bus system, which is con-

nected to the main bus system of SIFT via logic that is realized by a

specially programed microprocessor (marked as P in Figure.VI-12).

t
MICROPROCESSOR-BASED

INPUT/OUTPUT CONTROLLER

FIGURE VI-12 INPUT/OUTPUT FOR CRITICAL SENSORS AND ACTUATORS

110

Each microprocessor operates in the same manner as t h e main

p rocesso r s o f S IFT , excep t t ha t t he t a sks t ha t are to be pe r fo rmed are

much smaller a n d t h e e x e c u t i v e t h a t r e s i d e s i n them is a reduced vers ion

of the LE/GE c o m b i n a t i o n i n t h e c e n t r a l p r o c e s s o r s . The r e d u c t i o n s t h a t

are made are:

0 No g loba l execu t ive i s p r e s e n t i n t h e m i c r o p r o c e s s o r s ,
as the func t ions normal ly per formed by it are e i t h e r
n o t n e c e s s a r y o r are c a r r i e d o u t by t h e GE of the
central p rocesso r s .

0 The LE con ta ins on ly t he vo te r , s chedu l ing , and d i s -
p a t c h i n g f u n c t i o n s , t o g e t h e r w i t h s u f f i c i e n t o f t h e
g l o b a l / l o c a l i n t e r f a c e t o e n a b l e i t t o d e t e r m i n e i t s
schedu les by r ead ing t he cen t r a l GE t a b l e s .

I n a l l o t h e r r e s p e c t s t h e 1/0 p r o c e s s o r s o p e r a t e a c c o r d i n g t o

t h e same g e n e r a l r u l e s as t h e c e n t r a l p r o c e s s o r s . T h i s i n c l u d e s v o t i n g

on mu l t ip l e i npu t t o ach ieve e r ro r de t ec t ion and co r rec t ion , r econf igu -

r a t i o n by change o f s chedu l ing t ab l e s , and t he r e s t r i c t ion t ha t a pro-

c e s s o r may on ly r ead da t a f rom o the r p rocesso r s and may n o t write i n t o

t h e memory o f o the r p rocesso r s .

F igure VI -12 shows t h e l o g i c a l s t r u c t u r e b u t d o e s n o t i n d i c a t e

the phys ica l p lacement o f the 1/0 p rocesso r s . It is a n t i c i p a t e d t h a t some

o r a l l of t h e 1/0 processo r s cou ld be p l aced c lose t o t he s enso r s and

a c t u a t o r s t h a t m u s t b e c o n t r o l l e d . Such cons idera t ions depend on the

e c o n o m i c s a n d r e l i a b i l i t y p r e d i c t i o n s f o r t h e v a r i o u s b u s s y s t e m t e c h -

no log ie s .

3. - N o n c r i t i c a l I n p u t U n i t s

I n a SIFT s y s t e m t h a t is ca r ry ing ou t bo th c r i t i ca l and non-

c r i t i ca l t a s k s , i t is necessa ry t o ma in ta in a sepa ra t ion be tween t he t a sks

b e c a u s e t h e n o n c r i t i c a l t a s k s may n o t receive as much v a l i d a t i o n and ver-

i f i c a t i o n as t h e c r i t i c a l tasks and thus may c o r r u p t them. A method of

pro tec t ion , whereby a p rogram canno t a f f ec t t he memory o u t s i d e t h a t al-

l o c a t e d t o i t , p reven t s p rog rams fo r t he nonc r i t i ca l t a sks f rom in t e r -

f e r i n g w i t h t h e c r i t i c a l o n e s (s e e S u b s e c t i o n VI-C-4). The same degree

of p r o t e c t i o n a g a i n s t t h e p o s s i b i l i t y of e r r o r s i n t h e h a r d w a r e i s

111

achieved by the use of a microprocessor-based unit that connects to the

main bus system and is used to read from the sensor and deposit the re-

sults of the read operation in its own memory. These results can then be

read by the main processors of SIFT. This scheme effectively isolates

potentially unreliable equipment from the other units of the system.

4. Noncritical Actuator Units

Noncritical actuators can be dealt with in the same manner as

noncritical sensors, by interposing a microprocessor-based unit between

the busses of SIFT and the units themselves. To some extent this may not

be necessary if the units themselves are so connected into the bus system

that they can only read from the SIFT module memories. This constraint

on the operation can be achieved in the bus control mechanism, as is the

case for the connection of SIFT modules themselves. The advantage of the

use of a microprocessor is that attention can be given to the design of

its interconnection and the same logic can be used many times, whereas if

the units are themselves connected, then it is necessary to ensure that

the logic and physical design preclude the propagation of errors or dam-

age. This validation would have to be carried out for each individual

type of unit that is connected to the system.

C. SIFT Memory System Design

1. Introduction and Summary

In this discussion of SIFT memory system design, we consider

the storage of programs and data for high-rate control and display func-

tions, which are served by the distributed memories of the basic SIFT

scheme, and also the low-rate, high-volume storage that may be required

in a practical, general-purpose aircraft computer.

At the present state of development of the SIFT architecture,

the following questions about memory are the most pertinent:

0 How many levels of memory are needed to accommodate
the range of storage capacities and speeds in the
SIFT prototype?

112

0 What technologies are appropriate to the various
storage functions?

0 What special logical functions may be needed within
memory modules to support SIFT processing and com-
munication modes?

What fault-tolerance capabilities are appropriate
to the various levels of the memory hierarchy?

0 What are the basic performance requirements for SIFT
memories?

These questions are discussed in order.

The following conclusions are derived in the discussion:

0 Two levels of memory are needed in an Air Transport
SIFT: a set of high-speed random access memories
(RAM) for program execution and a high-capacity block-
access byte-serial store. A large central RAM is not
needed.

0 The following fault-tolerance schemes appear attractive:
- Single-error-correction, double-error-detection
codes exist for RAM data channels.

- Software reconfiguration of contiguous blocks of
words in RAM is provided.

- Either arithmetic sum checks or longitudinal parity
checks are made for a byte-serial store.

- Redundant address information (to some degree of
precision) may be usefully appended to each RAM
word.

- The appropriate form of redundancy for the block
access memory needs further study. Dual redundancy
appears satisfactory.

- A section of read-only memory may be employed use-
fully in each processor memory.

- A reliable form of nonvolatile writable RAM would
be beneficial, but is not presently available.
Awareness of future developments is desirable.

- The feasibility of marginal checking for contem-
porary semiconductor memories should be investigated.
It is potentially of great value in SIFT.

- Memory design should allow for the possible use of
tagged architecture. Tagging of words appears to
have several beneficial uses, e.g., in protecting
data from erasure because of erroneous address
calculation.

113

0 The problem of unflexed fault tolerance circuits is
significant, but solutions are apparent, e.g., perma-
nently string data patterns in memories that can test
error-detection logic.

2. Memory Hierarchy

The most pressing concern about the SIFT prototype memory hier-

archy is the need for a central fast memory. Our studies3 have determined

that the high-rate aircraft control programs may be served adequately by

the memory modules associated with the distributed SIFT processors. It
also appears necessary to have capability for storing high-volume data

with relatively low requirements for access speed. Data of this type

include :

0 Copies of all programs, to be used in an extreme
situation when normal reconfiguration fails.

0 Infrequently used programs, e.g., for diagnosis.

0 Sequences of recent input-output activity, to be
used for system recovery or off-line system analysis.

The volume and rate required for this class of data are now known precisely,

but it appears that (1) transfer of a block of data, with latency on the

order of a few milliseconds, is satisfactory (see Section V), and (2)

capacities on the order of lo7 bits and data rates of lo6 bits per second
are reasonable to demand. Such characteristics are provided by current

technologies in the form of block-organized shift registers.

These considerations indicate that the SIFT prototype should

provide for serial-mode, block-transfer storage as well as multiple,

fast, random-access storage units for the distributed processing of high-

rate programs. Given the disparity in speeds and sizes of the two memory

types, it is natural to consider the use of an intermediate level of

storage, such as a large-capacity random-access memory.

The following uses for such a memory are apparent:

(a) Direct program execution, one benefit of which would be
an economy in storage, since failures in a processor would
not require abandonment of memory, as in the present dis-
tributed processor design. A second benefit would be a

1 14

r educ t ion i n t he ove rhead r equ i r ed fo r t he memory mapping
t h a t s u p p o r t s r e c o n f i g u r a t i o n o f s t o r a g e u n d e r f a u l t s .

Storage of rarely used programs, a benef i t o f which would
be a r e d u c t i o n i n t h e r e q u i r e d c a p a c i t y o f t h e d i s t r i b u t e d
processors for programs which, when needed , requi re rap id
a c c e s s .

S t o r a g e o f f l i g h t - c r i t i c a l p r o g r a m s f o r r a p i d l o a d i n g o f
d i s t r i b u t e d memories d u r i n g f a u l t r e c o v e r y .

S to rage of fu ture very l a rge p rograms tha t exceed the
ind iv idua l capac i ty o f p re sen t d i s t r ibu ted memor ie s . A
b e n e f i t would be to s imp l i fy r econf igu ra t ion p rocedures ,
s i n c e t h e d i s t r i b u t e d memories would be reserved for small
programs.

Of t h e s e p o i n t s , o n l y (a) r e q u i r e s s p e c i a l a r c h i t e c t u r a l p r o -

v i s i o n s , s i n c e t h e d i r e c t e x e c u t i o n of programs from a c e n t r a l memory

r e q u i r e s a ma jo r i nc rease i n bus da t a rates and/or a redesign of the bus

concept . The major benefi ts appear to be economic, on the grounds that

i n a c e n t r a l memory, f a i l u r e of a processor does no t cause a r e d u c t i o n

i n memory; hence a lower amount of memory redundancy is needed. The

economic impact would appear t o b e small, b e c a u s e p r o c e s s o r f a i l u r e is

e x p e c t e d t o c o n t r i b u t e l i t t l e t o s y s t e m f a i l u r e rate compared t o memory

i t s e l f .

Po in t (b) , s to rage o f r a r e ly u sed p rog rams , can be s a t i s f i ed by

the b lock -o rgan ized s to rage l eve l , p rov ided t ha t t he s to re i s capable of

loading a 1 K program block in 1 2 m s [R e f . 3 1 .

P o i n t (C), s t o r a g e f o r r a p i d l o a d i n g o f c r i t i c a l programs,

a p p e a r s n o t t o h a v e s i g n i f i c a n t b e n e f i t . A l l t h e c r i t i c a l programs sur-

veyed are small and can be t ransferred between a p a i r of d i s t r i b u t e d

memories w i t h s u f f i c i e n t s p e e d t o meet r e c o v e r y r e q u i r e m e n t s . I f , i n t h e

f u t u r e , c r i t i ca l programs are added t h a t are so l a r g e as t o p r o h i b i t

r a p i d t r a n s f e r , s a t i s f a c t o r y r e c o n f i g u r a t i o n c o u l d b e a c h i e v e d by employ-

i n g a h i g h e r o r d e r o f r e p l i c a t i o n t h a n i s c u r r e n t l y e x p e c t e d f o r a p p l i c a -

t ion p rograms.

Poin t (d) , s torage o f abnormal ly l a rge p rograms, does no t con-

s t i t u t e a c o m p e l l i n g r e a s o n f o r d i s t i n g u i s h i n g a s e p a r a t e level of memory.

It m i g h t r e q u i r e t h a t some of t h e d i s t r i b u t e d memories be of larger than

115

average size. This would tend to constrain the flexibility of reconfigu-

ration, but it does not seem to be a serious problem.

We conclude that an intermediate level of storage, in the form

of a large random access memory, is not justified.

It should be noted that the arguments given are based on the

particular computational needs of the air transport problem environment

and on currently feasible memory organizations. The appropriate memory

hierarchy for a SIFT computer used in different problem areas, e.g., time-

shared computing or communications processing, would have to be reexamined.

New memory developments might also have an impact. For example, an ex-

tremely low-cost serial store might be a useful attachment to each dedi-

cated processor-memory.

3. Memory Technologies

The primary impact of memory technology on SIFT architecture is

felt in the following issues:

0 The choice of magnetic core or semiconductor storage

0 The feasibility of a block-access 107-bit secondary

for the processor memories.

store.

0 The need for fixed or nonvolatile storage.

In the July 1974 study [Ref. 31 it was argued that semiconductor

memories are preferable to magnetic-core memories on the ground that (1)
they tend to use much fewer circuit connections and manual assembly opera-

tions, (2) the drive circuits operate at lower, hence less stressful power

levels, and (3) low-level sense signals are restricted to the interior of

the devices, hence are more immune to noise. We believe that these fac-

tors still apply, and our following discussions assume the use of semi-

conductor memories for the processor memories. We also observe that

magnetic-core memory technology continues to evolve appreciably. There-

fore the comparative value of the two memories should be reviewed period-

ical ly .

116

Recent developments have established the feasibility of two
novel technologies for block-access stores: charge-coupled devices (CCD)

and magnetic bubble storage (MBS). Both are amenable to byte-serial

shift-register type structures and are well suited for block-structuring,

with block lengths of 104-10 bits. Data rates appear to favor CCD by a

factor of two to three. Contemporary CCD units have a maximum rate of
about 5 Mb/s, while MBS units have a maximum rate of about 2 Mb/s. CCD

appears to be capable of higher speed through design refinements, but
significant increases in MBS speeds may require a breakthrough in tech-

nology.

5

An important function of a block-store memory is to retain data

between flight periods. At such times, aircraft power may be off. It is
therefore important to consider the feasibility of means for preserving

data with power-off in the two schemes. MBS appears to have a significant
advantage in nonvolatility of data, in respect to both (1) power loss and

(2) interference due to strong environmental signals such as lightning.

This advantage results from the use of static magnetic biasing fields

closely adjacent to the storage surface. The problem of power loss in

CCD (and other semiconductor memories) may be mitigated by the use of

small batteries, and the problem of interference may be solved by careful

shielding. The use of "holding" batteries is common in current semicon-

ductor memories, but it is not yet fully accepted as a solution. Shield-

ing as a protection against lightning strikes also has proved generally

satisfactory for low-power digital circuits. Power loss remains an
inadequately studies problem.

Based on nonvolatility, MBS would appear to be the medium of

choice at this time. The issue, however, may be decided on economic

grounds. While the primary issue for the air transport application is
not cost but reliability, the two are closely connected, since high-volume

production has a strong effect on intrinsic device reliability.

With regard to economic factors, CCD has a strong current ad-
vantage over MBS, derived in part from the strength of the existing semi-
conductor industrial technology base. CCDs are themselves facing strong

1 1 7

competition from ordinary random-access memory (RAM) technologies. Appar-

ently the somewhat higher intrinsic cost of RAMs (due to higher fabrica-

tion and testing complexity) may be outweighed by their presently much

higher production volumes and by the system advantages of their lower

latency times.

In summary, a reliable, low-cost, block-oriented mass store

appears feasible at this time. If the magnetic bubble technology proves

not to be economically viable, then special effort should be made to

assure the capability of semiconductor memories to withstand transient

interference and to have data maintained during power-off periods of

several days.

The problem of data-volatility also pertains in the distributed
RAMs used for program execution. The reason for concern is that a massive

power failure or noise impulse may erase critical programs or data and

require a time-consuming reloading of programs or recomputation of crit-
ical state data.

The most critical data, in order, are:

0 The local executive program

0 Any copy of the global executive program

0 Flight-critical state information for high-iteration-
rate control programs

0 Flight-critical state information for low-rate control
programs

0 Non-flight-critical programs.

The following several candidate functional types of random-

access memory are considered. It is generally feasible to mix memory
types within a single memory unit.

The most nonvolatile memory is a read-only memory (ROM). For-

tunately, a ROM is entirely feasible for the local executive because the

same program appears in each memory, and it should not be subject to

change. The use of a ROM has the important benefit that it would permit
system initialization without the use of external memory units.

118

The use of ROM for the global executive is more controversial,

because not every memory needs a copy of the global executive and because

the program may be more subject to change. The nonvolatility of a ROM
may be attractive enough for the purpose of rapid recovery after massive

transient errors to justify some extra copies of the global executive.

It should not be necessary to have a copy in each memory, merely enough
to cover the expected needs for spare copies. Furthermore, it may be

possible to partition the global executive program into ROM and RAM por-
tions to achieve some economy in the redundant copies; every memory would
then have a copy of the ROM.portion, but only as many RAM-portion copies

would be carried as are expected to be needed.

ROM technology is not appropriate for Items (c), (d) and (e).

For critical-state information, it would be attractive to be able to use
one of the various forms of writable nonvolatile semiconductor memory, a

function usually referred to as programmable read-only memory (PROM).

The so-called MNOS technology, for example, has the desirable character-

istic that information is retained without applied power. It has several
disadvantages, such as deterioration with extensive use and slow writing

speed, which seem to rule it out for the present application. Several

claims have been made recently in various trade journals about improved

PROM technologies for RAMS and CCDs. Such developments deserve continued
attention.

In summary, the use of ROM for a portion of the SIFT working

memories should be assumed. The use of PROM technology would be benefi-

cial if some reliable form appears that is compatible in timing with the

'primary RAM devices.

4 . Special Logical Functions

In this section we discuss the possible need for special logical
functions in memory units other than for fault tolerance. We consider

both the distributed RAM memories and the block-structured mass memory.

In SIFT, each processor handles a mix of tasks, some of which

are of high criticality while others may have no strong reliability

119

requirements. It is expected that the high-criticality programs will be
subjected to a variety of verification procedures (including formal proof)

to ensure their correctness. The tasks of low criticality may not be

verified to the same high degree, and thus it is necessary to ensure that

these latter tasks cannot adversely effect the correct operation of the

high-criticality task through the presence of programming errors. A

powerful mechanism to guarantee the separation of tasks is the use of

"bounds" checking on memory references. This mechanism allows a task

program to write only into the area of memory that is allocated to it.

Various known address-control mechanisms should be incorporated

in the processor. It may also be cost-effective'to include some redun-
dancy within the memory. For example, a short data field may be attached

to each data word that can carry some identification to aid in program

protection. Such identification could be either a unique program label,

or perhaps, a label indicating the level of certification reached by a

given program.

Such appended data fields are known as tags. The extensive use

of tags has been advocated by several authors (Feustal), e.g., for secu-

rity enhancement and for indicating the "type" of a datum (integer, alpha-

numeric, etc.). It is employed in at least one line of commercial com-
puters. Decisions about tagging properly belong to processor design.

For the SIFT RAMS, the concept simply implies additional word length of

from three to ten bits. Logical operations on the tags would be accom-

plished within the processors.

The second class of memory function is the block-oriented bulk

memory. This memory is not intended for direct program execution, so it

need not be associated with a regular processor. Nevertheless, in order

to receive data for recording, it must actively request it. Some form

of processor is therefore needed to provide this function, as well as

such functions as block address interpretation and output. Only a frac-

tion of the logical capability of a standard SIFT processor would be

needed, but using one is probably the most cost-effective approach.

120

5. Fault Tolerance

The basic SIFT concept assumes the use of modules of standard

design for both memories and processors. The primary mechanism for fault

tolerance is reconfiguration over modules, but the use of some fault-

tolerance mechanisms within modules is not excluded, and may, in fact,

be cost effective. This section discusses the use of fault tolerance
within SIFT memories. The major emphasis is on the primary distributed

memories.

The five relevant issues in memory fault tolerance are:

0 Diagnosis

0 Error detection
0 Error correction

0 Reconfiguration

0 The "unflexed fault tolerance circuit" problem.

These issues will be discussed in order.

a. Diagnosis

The need has been established for in-flight diagnosis in

addition to preflight diagnosis for the Air Transport SIFT. The archi-

tectural issues are (1) should diagnostic data have a special memory port,

or should it flow via the normal data part, and (2) are any special logi-
cal capabilities needed within the memory devices or subsystems to aid in

diagnosis?

With regard to the first of these, it is clear that addi-

tional ports would introduce sources of error whose control might be very

expensive in terms of added system fault-tolerance mechanisms and increased

complexity of reliability analysis. All efforts should be made to employ
the data paths and processor control functions used for actual computa-

tion.

The second issue is difficult to address in the absence of

particular memory designs. In general it is desirable to avoid special

mechanisms, both to reduce the number of fault sources, and to avoid

121

special, low-volume production runs that might be required for special

features, but two functions may justify some added equipment: (1) marginal

testing, and (2) partitioning of memory to enhance fault location.

We deem marginal testing to be potentially a very valuable

facility, especially because it may help to uncover incipient faults, and

thus give time for reconfiguration before computing errors occur. The

actual benefit for contemporary memory systems needs to be ascertained

prior to the statement of engineering specifications. One item of con-

cern is that the control of such marginal states needs to be protected.

One one hand, the use of program control introduces new hardware and soft-

ware sources of error (in order to limit the damage due to such errors,

marginal checking should be controlled independently in each processor).

On the other hand, it would be an unreasonable burden on the flight crew

to have the control completely manual. It may be acceptable to use pro-

gram control together with a crew-visible indicator to indicate the appli-

cation of a marginal state. This would tend to protect against a stuck-on

marginal state. *

The use of internal logic to enhance fault location could

be beneficial if it were desired to use internal reconfiguration for fault

tolerance (e.g., by modifying memory address-mapping). Its benefit would

be to accelerate diagnosis by isolating sections of memory. RAMS have

very uniform structures, which are amenable to systematic testing. It is
therefore not clear that the amount of the acceleration of diagnosis

would justify the cost and fault-hazard of the added logic. Some further

investigation of this point would be justified. In any event, since
memory diagnosis is not feasible for recovery of high-criticality faults,

its acceleration is a relatively minor issue.

-

*The trade-offs discussed here also appear in th'e more general issue of
run-time system diagnostics, since any diagnostic mode can introduce
some sources of vulnerability to mission-directed computation.

122

b. Error Detection

Error detection in SIFT memories may have several benefits.

For example,

0 As an adjunct to error correction, it can give
warning of an incipient memory-unit failure.

0 It can strengthen the decision of a programmed
voting check; that is, if one version of an
input datum disagrees with the one (or more)
other versions, a memory-error indicator can
confirm the identification of the faulty data
source. If there is only one other version
(i. e. , if the redundancy is "dual"), then the
faulty source may be identified without further
diagnosis. This would tend to justify increased
use of dual-mode redundancy.

Many effective techniques are known for error detection in

memories. Several important examples are: (1) generalized parity-check
codes for words of data, (2) special codes for numerical data, (3) arith-

metic sumchecks for blocks of data, and (4) address tags (for verifying

address-selection logic in RAMs).

Parity-check codes are very cost-effective for RAMs, and

are widely used. The use of up to ten percent additional number of bits

is probably justified.

The use of separate codes for numerical data is not justi-

fied. They are inefficient for memories, and ineffective for LSI-

realized processors, especially in a voting-and-whole processor-

reconfiguration scheme such as SIFT.

The use of arithmetic sum-checks for data blocks appears

attractive for a serial mass-memory, since it would tend to catch shift-
control faults (that would cause loss of duplication of characters). The

technique has no additional contribution over word-parity checks for RAMs.

The use of redundant address tags on words is attractive,
since certain faults in some RAM word-selection logic-circuits tend to
cause selection of single incorrect words (other faults may cause selec-
tion or partial selection of several words). Single-word selection errors

123

would not be detected by parity checks. The cost of detection would de-

pend on the precision of the redundant address information. This could

range from one bit to the full address. The value of this technique

should be estimated in the context of particular memory system designs.
For example, the word selection logic may be such that most failures give

either non-selection or multiple-word selection.

c. Error Correction

The benefit of error correction for the data of SIFT memo-

ries is that it may be a very cost-effective way to prolong the useful

life of by-far the largest portion of SIFT hardware. It appears to be
unsurpassed in cost-effectiveness protection against one or perhaps two

faults per memory unit. Furthermore, it is usually inexpensive to obtain

error detection of one unit more than the amount of error correction.

Thus, given the programmed voting check of SIFT, the occurrence of two

errors in a single-error-correctiony double-error-detection memory unit

would still allow indication of which version of a dual-redundant com-

putation is correct.

While the use of error detection alone is potentially very

effective in SIFT, as discussed previously, the added cost of single-error-

correction with double-error-detection appears to be highly justified.

The degree of redundancy required for a block-access mass

memory will depend on technological factors that are presently unknown.

Considering the relatively low criticality of the data, dual redundancy

may be satisfactory. Since the memory will probably have a module real-

ization, it may be that dual redundancy might be effectively applied over

storage blocks within a memory, provided that the driving circuitry can

be protected.

d. Reconfiguration

The major value of memory reconfiguration is to deal with

multiple faults, since error-correction schemes using coding are almost

124

always more cost-effective for one or two faults. Reconfiguration may

be applied at the level of a block of words, a bit-plane or a memory

device.

The least expensive form is block reconfiguration. In the

current SIFT design, software memory mapping tables are employed to inter-

pret addresses for all interprocessor communication. These tables greatly

facilitate program relocation among processor-memory units. It is a
trivial step to assign values to the mapping tables so as to bypass any

contiguous block of words in a memory that has been determined to contain
faults, The major cost would seem to be the size of the program (and the

cost of its verification) needed to analyze the fault pattern and to

define the boundaries of the forbidden region.

Block reconfiguration is effective for faults in memory

cells and for some faults in word selection circuits, but it is not effec-

tive for faults that affect an entire bit circuit. Such faults are well
covered by error-correcting codes, for one or two bit circuits per mem-

ory. If a larger number of bit-circuit faults must be tolerated, some

form of switching of logical bit-planes may be effective. Such switch-

ing is very expensive and fault-prone. Considering the numerous other

fault tolerant mechanisms available in SIFT, we deem it not to be a cost
effective measure.

A device-level reconfiguration scheme has been described

[Ref. 31 that is very cost-effective for large numbers of faults. In

order to employ this scheme some modifications to memory chip design are

needed, together with a rather powerful diagnosis and reconfiguration

program. The initial cost of the scheme appears to be prohibitive for

the present application. Its greatest value is for very long unattended

life.

e. The "Unflexed Fault Tolerance Circuit" Problem

The general "unflexed problem" is the problem of determin-

ing that a functional element is operable prior to its use in a real-time

computation. This problem is especially serious for fault-tolerance

125

mechanisms. In a straightforward design, some failures of such a mecha-

nism will be observed only when the fault condition it is designed to

treat occurs. An apparent dilemma exists in that if a fault condition is
artificially simulated so as to test the mechanism, some action (such as

program reconfiguration) may be initiated that could harmfully degrade

performance; therefore, to avoid such degradation, the consequent activity

must be inhibited. Such inhibition, of course, may also be a source of

trouble, and a complete test must assure that the inhibition itself can

be terminated.

This problem applies to both hardware and software mecha-

nisms. In the case of memories, the controlled flexing of error detection
and correction circuits is clearly desirable. One attractive way to

achieve this would be to record permanently a set of erroneously encoded

words in an.ROM section of each memory. Such words could be read by a

diagnostic program which would be designed to interpret correctly the

outputs of the error-detection or correction circuits. The problem of

correctly inhibiting undesired reconfiguration would be passed upward to

the executive program.

This scheme avoids the need for special circuitry to defeat

the normal data encoding circuits. Such defeating would be needed in

order to simulate a defective memory.

6. Performance Specifications

In this section we summarize the performance required for SIFT

memories. At this stage of SIFT development, the various requirements
have different degrees of certainty. The discussion references the

sources of the requirements and indicates the issues that must be examined

in order to achieve more precise values.

a. Distributed-Processor Memories

The following requirements pertain to the random-access

memories used locally to each SIFT processor:

126

0 Word l eng th

Data f i e l d : 24 b i t s [R e f . 31

Tag f i e l d : 4 t o 8 b i t s
(l eng th t o be de t e rmined by a n a l y s i s of h igher -
level mechanisms f o r c o r r e c t i o n of f a u l t s i n
memory addres s ing)

Error-detection/correction f i e l d : 9 t o 12 b i t s
(assume 30 b i t s f o r d a t a and t ag) (l eng th t o
be determined by the t rade-off in cdst and
r e l i a b i l i t y b e t w e e n memory and coding-decoding
l o g i c)

0 Maximum c a p a c i t y : [64K-l28K] words [Ref. 31

Actual values w i l l va ry w i th t he app l i ca t ion , and
may be much less than the maximum. The expected
v a l u e r e q u i r e d t o c o v e r t h e e n t i r e se t of a i r
t r a n s p o r t a p p l i c a t i o n s i s [24K]. The maximum
amount assumed w i l l de t e rmine t he addres s s i ze
r e q u i r e d f o r p r o c e s s o r d e s i g n . The va lue of
maximum-capacity s t a t e d i s c o n s i s t e n t w i t h t r e n d s
i n modern minicomputer technology and architec-
t u r e . It is v e r y c o n s e r v a t i v e w i t h r e s p e c t t o
t h e f u l l s e t o f c o m p u t a t i o n s s u r v e y e d i n R e f e r -
ence 3 . It i s conce ivab le t ha t some new r e q u i r e -
ments may d e v e l o p t h a t g r e a t l y i n c r e a s e r e q u i r e d
system memory-capacity, e.g. , elaborate graphic
d i s p l a y s . The SIFT arch i tec ture can be expanded
(by a t least a f a c t o r of three, and perhaps
h ighe r) by t h e a d d i t i o n o f new processor-memory
p a i r s , so as t o meet a g r e a t l y i n c r e a s e d r e q u i r e -
men t .

Access modes: (1) whole word, read/write, random-
a c c e s s (a c c e s s t o s u b f i e l d s a t t h e memory i n t e r -
f a c e i s an unnecessary fea ture and would g r e a t l y
complicate error-detectionlcorrection); (2) whole
word, read-only, random-access (data are preset
a t manufac ture) . Assembly should a l low easy
change of ROM p o r t i o n by maintenance personnel.
T o t a l amount of t h e ROM p o r t i o n i s expec ted to
be less than 20% of t he d i s t r ibu ted -p rocesso r
memory.

0 S p e c i a l f e a t u r e s

(1) S i n g l e e r r o r c o r r e c t i o n w i t h d o u b l e e r r o r
detect ion, us ing encoding and decoding
l o g i c a t t h e (word) d a t a i n t e r f a c e .

(2) P o s s i b l e u s e of programmed marginal check-
ing o f memory c i r c u i t s .

127

0 Interfaces

(1) High bandwidth interface to the local
processor.

(2) The interface to the bus system must incor-
porate a means to protect the memory from
continuous accesses by a faulty bus. Sec-
tion VI-B describes such an interface which
is identical to the means used by a bus to
protect itself against repeated accesses by
a faulty processor.

b. Block-Access Memory

Requirements on the block-access memory are less certain

at this time than those on the random-access memories, because the re-

trieval functions are less critical. Also, some relevant architectural

issues remain to be settled, such as tolerance to transient interference.

The key characteristics are data rate, delay in accessing

the beginning of a data block, and capacity. The capacity of the memory

system will be determined by numerous critical and noncritical data

functions. A range of lo6 to 10 bits appears likely. The data rate and
access delay will depend upon the critical functions. These appear to be

of two classes, i.e., temporary storage of input and output data, and

storage of duplicate copies of critical programs. A maximum recovery

time of 12 milliseconds is assumed. Separate block memories may be needed
for the two classes. The following estimates apply:

8

0 Data rate: for temporary I / O : 10 bytes/sec 6

for program access : 0.5 X 106 bytes/sec.
(based on transfer of a block of 4K word,
30 bit/word, in 50 ms).

Access delay for a random block: less than 1 ms.

Special features:

(1) fault tolerance probably in the form of
dual redundancy, with independent control
of storage and retrieval. Possible use of
longitudinal error-detecting codes.

128

D. P rocesso r s

The e s s e n t i a l f e a t u r e s t h a t are r e q u i r e d i n a SIFT p r o c e s s o r f o r

u se i n an advanced comnerc i a l t r anspor t are d e s c r i b e d i n t h i s s e c t i o n .

A s t he f au l t - to l e rance o f t he comple t e sys t em i s achieved by so f tware

a ided by t h e o v e r a l l s y s t e m s t r u c t u r e , t h e r e i s l i t t l e need for any

spec ia l f au l t - to l e rance ha rdware . in t he p rocesso r s t hemse lves . Ra the r ,

t he r equ i r emen t s on the p rocesso r are c o n f i n e d t o a small number of

c r i t i c a l f e a t u r e s t h a t e n a b l e t h e s o f t w a r e ' t o a c h i e v e t h e f a u l t - t o l e r a n c e .

The c r i t i ca l i s s u e s i n t h e s p e c i f i c a t i o n o f t h e p r o c e s s o r s are:

I n t e r f a c e t o t h e b u s s y s t e m

I n t e r f a c e t o t h e memory

0 F e a t u r e s t o assist d i a g n o s i s i n t h e p r o c e s s o r s

0 Indi rec t and indexed address ing

0 I n t e r r u p t s y s t e m

0 I n t e r n a l c l o c k

0 Memory access bounds checking.

We a d d r e s s t h e s e p o i n t s i n t h e o r d e r l i s t e d .

The i n t e r f a c e t o t h e b u s s y s t e m i s t h e m o s t i m p o r t a n t i s s u e i n t h e

p r o c e s s o r s p e c i f i c a t i o n . It i s t h i s i n t e r f a c e t h a t e n a b l e s t h e SIFT

s y s t e m t o a c h i e v e f a u l t i s o l a t i o n a n d damage i s o l a t i o n b e t w e e n i n d i v i d u a l

processor memory modules. The f a u l t i s o l a t i o n i s achieved by t h e f a c t

t h a t t h e p r o c e s s o r s c a n n o t w r i t e d a t a o n t o o t h e r u n i t s , and t h e damage

i s o l a t i o n c a n b e a c h i e v e d by t h e u s e o f a p p r o p r i a t e c i r c u i t d e s i g n

techniques such as t h e u s e o f h igh impedance d r ive c i r cu i t s . The i n t e r -

face mus t be capable o f t ransmi t t ing a da ta - r ead r eques t t o t he app ro -

p r ia te b u s a n d o f t r a n s f e r r i n g t h e a c c e s s e d d a t a b a c k t o t h e r e q u e s t i n g

p rocesso r . A da ta - r ead r eques t con ta ins t he fo l lowing e l emen t s :

Bus des igna to r (max 3 b i t s)

0 Process des igna to r (max 4 b i t s)

Task des igna tor (max 6 b i t s)

0 O f f s e t w i t h i n t a s k (max 14 b i t s) .

129

.. - " ."

The above estimates f o r t h e number o f b i t s a s sumes t ha t t he fo l lowing

maxima are u s e d i n t h e SIFT s p e c i f i c a t i o n : 8 busses , 16 p rocessors , 64

t asks and 16K words within a t a s k . It a l s o a s s u m e s t h a t a s i m p l e b i n a r y

code i s used and t ha t codes fo r e r ro r de t ec t ion and co r rec t ion are n o t

employed. The above control data must be communicated to the bus system.

The 27 maximum b i t s o f t h i s d a t a c a n b e a c h i e v e d w i t h t h e f i l l i n g of a

r e g i s t e r of two words l eng th . Th i s imp l i e s t he ex i s t ence of t h i s s p e c i a l

r e g i s t e r a t t a c h e d t o t h e c o n v e n t i o n a l o u t p u t u n i t o f t h e p r o c e s s o r . The

use of such a s p e c i a l r e g i s t e r c a n e n a b l e c o n v e n t i o n a l p r o c e s s o r s t o b e

used i n t h i s a p p l i c a t i o n w i t h or r ly the requi rement o f be ing ab le to load

a p a i r of e x t e r n a l r e g i s t e r s , as will b e p o s s i b l e w i t h a l l commonly avail-

a b l e p r o c e s s o r s . F o l l o w i n g a c t i o n by the bus system on t h e c o n t r o l d a t a

a word w i l l b e t r a n s f e r r e d b a c k t o t h e p r o c e s s o r . T h i s word of d a t a w i l l

b e p l a c e d i n a n e x t e r n a l r e g i s t e r t h a t c a n b e r e a d by t h e p r o c e s s o r i n a

conventional manner.

*

The i n t e r f a c e t o t h e memory u n i t s would be the convent iona l in te r -

f a c e as t y p i c a l l y s u p p l i e d w i t h a processor and no spec ia l r equ i r emen t s

arise i n t h e case of the SIFT computer.

The u s e o f s p e c i a l f e a t u r e s t o assist i n t h e d i a g n o s i s of p rocesso r s

and memories would l e a d t o a n o p p o r t u n i t y f o r more power fu l d i agnos i s

t e c h n i q u e s . I n t h e SIFT system we in t end t o base t he d i agnos i s o f equ ip -

ment on t h e b e h a v i o r a l c h a r a c t e r i s t i c s of that equipment and thus w e see

l i t t l e need f o r s p e c i a l b u i l t - i n test equipment (BITE) o r i t s u s e i n

b u i l t - i n t e s t i n g (B I T) .

The reading of data in one computing module by ano the r demands t h a t

i n d i r e c t a d d r e s s i n g b e a v a i l a b l e , b e c a u s e t h e l o c a t i o n of a word i n one

memory u n i t i s unknown t o t h e r e a d i n g u n i t . T h i s i m p l i e s t h a t a t a b l e

o f base addres ses fo r da t a s egmen t s be kep t i n each memory and t h a t t h e

access t o a word in those memor ies would u s e i n d i r e c t a c c e s s i n g t o t h e

r equ i r ed word. The same comments a p p l y a l s o t o t h e u s e of indexed access

~~ ~

* Assuming a word l e n g t h o f 1 6 b i t s as d i scussed below.

130

t o da t a . These r emarks are a l s o r e s t r i c t i o n s upon t h e s p e c i f i c a t i o n o f

memory u n i t s b u t are i n c l u d e d h e r e b e c a u s e t h e i n d i r e c t i o n a n d i n d e x i n g

i n t o memory is o f t e n c a r r i e d o u t i n t h e a s s o c i a t e d p r o c e s s o r .

The p r o v i s i o n o f a n i n t e r r u p t s y s t e m i n t h e p r o c e s s o r is requ i r ed

f o r some o f t h e f a u l t t o l e r a n c e t e c h n i q u e s t h a t are p a r t . o f t h e SIFT

d e s i g n . I n c l u d e d i n t h i s are t h e i n t e r r u p t f o r t i m e - o u t when a t a s k h a s

ove r run t he time a l l o t t e d t o i t a n d t h e i n t e r r u p t o n t h e o c c u r r e n c e o f a

c l o c k t i c k . The l a t te r occurs whenever a new t a s k starts. No e x t e r n a l

i n t e r r u p t s are e n v i s i o n e d f o r t h e SIFT system. An i n t e r n a l c l o c k is re-

qu i r ed t o p rov ide fo r t he above -men t ioned c lock t i cks a t the start of

each task f rame.

An impor tan t fea ture o f the p rocessor i s t h e n e e d t o p r o v i d e f o r

checking of t h e a d d r e s s i n e a c h t a s k c a l c u l a t i o n t o e n s u r e t h a t d a t a o f

o t h e r t a s k s is not cor rupted . This can be accompl ished by the u se o f

array bounds checking as i n c o n v e n t i o n a l d a t a p r o c e s s o r s .

Wi th in the limits of the above , there are few requirements on the

p rocesso r beyond the speed requi rement tha t the p rocessor be capable of

o p e r a t i n g a t a n i n s t r u c t i o n e x e c u t i o n rate of approximately 0.5 MIPS.

This i s a r e l a t ive ly modes t r equ i r emen t compared t o modern minicomputers,

b u t i s c u r r e n t l y beyond t h a t a c h i e v a b l e by present-day L S I microcomputers,

a l though i t is expec ted t ha t by t h e mid-1980s t h i s s p e e d will be achiev-

a b l e by s u c h u n i t s .

E. Power Supply System

We are concerned i n t h i s s e c t i o n w i t h r e l i a b i l i t y a s p e c t s of the

power supp ly sys t em fo r SIFT. Two i s s u e s are i m p o r t a n t , p r o t e c t i o n

a g a i n s t damage propagat ion and maintaining adequate power s u p p l y t o SIFT

i n t h e e v e n t o f i nd iv idua l power s o u r c e f a i l u r e s .

The pr imary power sources used on modern c i v i l i a n c o m m e r c i a l a i r c r a f t

va ry w i th each a i rcraf t type. For an example, the DC-10 and t h e 747 both

u s e a three-phase 400 c y c l e a l t e r n a t o r d r i v e n by each j e t engine. The

DC-10 h a s t h r e e j e t e n g i n e s a n d t h r e e a l t e r n a t o r s w h i l e t h e 747 h a s f o u r .

I n b o t h a i r c r a f t t h e power genera ted by t h e a l t e r n a t o r s i s r e c t i f i e d ,

131

r egu la t ed , and f ed t o a common 28-volt bus, which i n t u r n s u p p l i e s c u r r e n t

t o t h e 2 8 - v o l t b a t t e r y b a n k .

The a l t e r n a t o r s are used i n a f e e d b a c k s y s t e m i n w h i c h t h e r e g u l a t o r s

mon i to r t he i npu t vo l t age (and cur ren t) and feedback a p r o p o r t i o n a t e

amount t o t h e a l t e r n a t o r f i e l d t h u s c o n t r o l l i n g t h e a l t e r n a t o r o u t p u t v o l t -

age. Figure VI-13 depicts such a s i n g l e a l t e r n a t o r s y s t e m . F i g u r e VI-14

shows t h e power sources on a DC-10 a i r c ra f t w i th t h ree p r imary and two

a u x i l i a r y a l t e r n a t o r s . One o f t h e s e a u x i l i a r y u n i t s i s d r i v e n by a t u r -

b ine fo r u se when t h e a i r c r a f t i s on the ground and the main engines are

a t i d l e o r when e n g i n e s a r e b e i n g u s e d t o t a x i t h e a i r c r a f t , as the vary-

ing engine speeds used during taxi operat ion would cause unacceptable

v o l t a g e f l u c t u a t i o n s . The s econd aux i l i a ry un i t on t h i s a i r c r a f t is

d r i v e n by the f low f rom an ex terna l a i r scoop when t h e a i r c r a f t is i n

f l i g h t . It is s t r i c t l y f o r emergency pu rposes i n even t o f f a i lu re o f t he

m a i n a l t e r n a t o r s .

The 747 a i r c r a f t s y s t e m is similar but has four main engine d r iven

a l t e r n a t o r s a n d two a u x i l i a r y g a s t u r b i n e d r i v e n a l t e r n a t o r s . Each of

t h e s e a i r c r a f t p r i m a r y power systems i s a good example of p a r a l l e l r e d u n -

dancy. Under emergency operat ion, any one a l ternator feeding the bat tery

bank cou ld supp ly adequa te cha rg ing cu r ren t fo r a long enough per iod for

s a f e c o m p l e t i o n o f t h e f l i g h t .

Primary power sys t ems o f t h i s na tu re p rov ide a para l le l redundant

sys t em in wh ich t he ma in a l t e rna to r s a r e a l l on l i n e a n d c o n t r i b u t i n g t o

the common load . Up t o t h e l i m i t o f the s torage capac i ty o f t h e b a t t e r y

bank, the excess power i s be ing s to red . The r e g u l a t o r s a r e t y p i c a l l y

a d j u s t e d so t h a t e a c h a l t e r n a t o r is con t r ibu t ing an approx ima te ly equa l

amount t o t h e common load , When the ba t t e ry pack is f u l l y c h a r g e d , t h e

r e g u l a t o r s f u r n i s h less f i e l d and t h e a l t e r n a t o r i s a l l o w e d t o i d l e .

F a i l u r e of a n a l t e r n a t o r c a n b e c a u s e d e i t h e r by f a i l u r e o f t h e

d r iv ing eng ine o r by a f a i l u r e o f t h e a l t e r n a t o r i t s e l f . I n e i t h e r case

the r emova l o f t ha t a l t e rna to r f rom the sys t em is a f f e c t e d by t h e series

combination of (1) t h e r e c t i f i e r d i o d e a n d (2) by t h e r e g u l a t o r b e f o r e

manua l (swi t ch ing) i n t e rven t ion is a f f e c t e d . The r e m a i n i n g a l t e r n a t o r s

132

COMPARING
AMPLIFIER

RECTIFIERS I I
DIODE 1

ALTERNATOR
FIELD

1
- 3-PHASE 400-CYCLE -
I) ALTERNATOR

FIGURE VI-13 TYPICAL AIRCRAFT ALTERNATOR/REGULATOR SYSTEM

I

SWITCHING
I

RECTIFIERS
AUXILIARY

ALTERNATOR

a
T

EMERGENCY
ALTERNATOR

1. I

MAIN JET
ENGINE-DRIVEN

ALTERNATORS (1

I

MAIN BATTERY BUS -
TO LOAD SWITCHING PANEL -

1
MAIN - BATTERIES

-

i

FIGURE VI-14 SCHEMATIC OF DC-10 POWER SYSTEM

134

a u t o m a t i c a l l y p i c k up the ex t r a l oad wh ich w a s b e i n g c a r r i e d by the

f a i l e d u n i t i n a d d i t i o n t o t h e i r own previous load .

F a i l u r e o f a n y s i n g l e d i o d e by o p e n c i r c u i t c o n d i t i o n w i l l not nec-

e s s a r i l y c a u s e a s y s t e m f a i l u r e . The r i p p l e w i l l i nc rease and t he rect i -

f i e r o u t p u t v o l t a g e will d r o p , r e s u l t i n g i n i n c r e a s e d f i e l d e x c i t a t i o n

r e q u i r e m e n t t o t h e a l t e r n a t o r . The u n i t f a i l u r e s are normal ly de tec ted

a n d c o r r e c t e d b y t h e f l i g h t e n g i n e e r . A shor t ed d iode would be more

ser ious and could cause a f a i l u r e i n t h e u n i t e i t h e r by burn ou t of t h e

phase winding or damage t o t h e r e g u l a t o r c i r c u i t . (A s imple fuse could

b e i n s e r t e d i n e a c h p h a s e l e g t o e n s u r e a n o p e n c i r c u i t i n s t e a d of a s h o r t

and thus prevent component damage.)

One sugges t ed p ro t ec t ion dev ice i s an ove rvo l t age p ro t ec t ion dev ice ,

Figure VI-15. This device would be loca t ed a t the l oad i npu t . The

c i r c u i t h a s t h e a b i l i t y of f a s t a c t i o n i n t h e e v e n t t h a t a r e g u l a t o r

f a i l u r e r e s u l t e d i n a n o v e r v o l t a g e f r o m t h e a s s o c i a t e d a l t e r n a t o r . I n

t h a t case t h e d e v i c e would tu rn on t he SCR thus shoo t ing ou t t he fu se

and removing the offending system. The r e m a i n i n g a l t e r n a t o r s would be

una f fec t ed excep t t ha t t hey would b e r e q u i r e d t o p i c k u p t h e a d d i t i o n a l

load .

The a v a i l a b i l i t y o f t he f i ve gene ra t ing sys t ems p lus t he ma in ba t t e ry

bank provide a paral le l redundant system which has proved capable of

f a i l u r e - f r e e o p e r a t i o n f o r t h e time pe r iods no rma l ly r equ i r ed i n

commerc ia l f l i gh t s . The a t t e n t i o n of a f l i g h t e n g i n e e r t o m o n i t o r t h e

system and make t h e n e c e s s a r y s w i t c h i n g d e c i s i o n s . i s m a n d a t o r y i n p r e s e n t

f a i l u r e s i t u a t i o n s .

Consider a f a u l t t o l e r a n t c o m p u t e r power s y s t e m i n w h i c h t h e f l i g h t

eng inee r does no t p l ay such a p a r t . The u s e of m u l t i p l e p r o c e s s o r s would

a l low us t o t ake advan tage o f t he r edundancy o f bo th t he power sou rces

and the p rocesso r s . F igu re VI-16 shows such a s y s t e m a p p l i e d t o t h e

f i v e power s o u r c e s a v a i l a b l e on a DC-10 a i r c r a f t , f o r t h e c a s e of a SIFT

sys tem wi th a i r processors . F igure V I - 1 7 i s a s i m p l i f i c a t i o n i n w h i c h

t h e X s i n d i c a t e t h a t a connect ion i s made, i . e . , t h a t t h e p r o c e s s o r i s

o b t a i n i n g power f rom the assoc ia ted source .

135

_.

FUSE

TO PROTECTED
LOAD

FIGURE VI-15 OVERVOLTAGE PROTECTION CIRCUIT

Assume a failure of main alternator No. 1 in this system. Proces-

sors A , C, D, and F would each lose one of their three power sources.
Two sources would remain to sustain operation. The case is similar for

loss of alternators 2 or 3 . In each instance, two power sources remain,
In multiple failure cases, four processors are obtaining power from the

essential battery bus.

We conclude that a reliable power supply for the SIFT system can be
designed by using two techniques:

0 Incorporate protective devices in the local power system
controllers so as to provide protection against damage
propagation.

0 Use an interconnection scheme between power sources and
processor so that failure of up to two power sources does
not effect the SIFT system and failure of three power
sources causes failure of at most one processor/memory
module.

136

POWER
SOURCES

W.1 EMERGENCY
SOURCE

t ==E
PROCESSORS

1
I
I rE

F

FIGURE VI-16 CONNECTION BETWEEN POWER SOURCES AND PROCESSORS

137

PROCESSORS

A B C D E F

1

2

POWER SOURCES 3

EMERGENCY

ESSENTIAL
BUS

FIGURE VI-17 POWER SOURCES AND PROCESSORS CONNECTION PATTERN

REFERENCES

1. V. E. Benes, "Mathematical Theory of Connecting Networks and
Telephone Traffic" (Academic Press, New York, 1965).

2. A . Waksman, "A Permutation Network,'' Journal Assoc. Comp. Mach.,
Volume 15, No. 1, pp. 159-163 (1968).

3. J. Goldberg, K. N. Levitt, and J. H. Wensley, "An Organization for
a Highly Survivable Memory," IEEE Transactions on Computers,
pp. 693-705 (July 1 9 7 4) .

138

V I 1 RELIABILITY ANALYSES

A. Summary

Several models of SIFT system are examined t o d e t e r m i n e f a i l u r e

p r o b a b i l i t i e s a n d f a i l u r e rates under c i rcumstances where random permanent

f a u l t s o r t r a n s i e n t e r r o r s i n t e r f e r e w i t h normal operation. The system

i s modeled by a t ime-homogeneous Markov process, and analytical techniques

are deve loped fo r conven ien t so lu t ion o f t he a s soc ia t ed s ta te graphs.

P r inc ipa l pa rame te r s o f t he ana lys i s are t h e numbers of working processor/

memory and bus un i t s remain ing a t a p a e t i c u l a r time, t h e i r r e s p e c t i v e

f a i l u r e ra tes and t h e l e n g t h o f t i m e involved in reconf igur ing the sys tem

on de t ec t ion o f e r ro r . Each model i s implemented as a FORTRAN program from

w h i c h t a b u l a t e d v a l u e s o f f a i l u r e p r o b a b i l i t i e s may b e c a l c u l a t e d f o r any

d e s i r e d v a l u e s o f r e l e v a n t model parameters. The most s i g n i f i c a n t con-

c l u s i o n s o f t h e s t u d y are

a Assuming t y p i c a l f a i l u r e ra tes f o r e l e c t r o n i c c o m q n e n t s
and an accep tab le t o t a l sys t em f a i lu re r a t e o f 10 / h r
(a s recommended by t h e FAA), a SIFT system composed of
f i v e o r more processors and four o r more busses should
adequate ly meet t h e r e l i a b i l i t y r e q u i r e m e n t s .

a System survival i s l i m i t e d by t h e "weaker" c o l l e c t i o n
o f t h e two t y p e s o f u n i t s (p r o c e s s o r s o r b u s s e s) . T h a t
is, i f t h e r e are too few p r o c e s s o r s a v a i l a b l e a t a given
time, i t does no t improve sys t em r e l i ab i l i t y t o have a
l a r g e number o f ava i l ab le busses , and conve r se ly .

a For e i the r pe rmanen t o r randum t r a n s i e n t f a u l t s , s y s t e m
performance i s no t s ign i f i can t ly deg raded by r econf igu -
r a t i o n times an order o f magni tude g rea te r than the ex-
p e c t e d v a l u e o f a few mi l l i s econds .

0 U n c o r r e l a t e d t r a n s i e n t e r r o r s s i g n i f i c a n t l y d e c r e a s e
s y s t e m r e l i a b i l i t y o n l y i f t h e i r ra te of occur rence i s
comparable wi th tha t o f permanent fa i lure .

139

B. Mot iva t ion

According to an old anecdote , one e l e c t r i c a l instrument manufacturer

dur ing the mid-1930s used to t es t h i s p r o d u c t s f o r r e l i a b i l i t y by kicking

them down a f l i g h t o f s tairs. Apparent ly the p rocedure was e f f e c t i v e ,

s ince h i s equ ipmen t en joyed t he r epu ta t ion o f extreme ruggedness. The

s t o r y i l l u s t r a t e s a n e a r l y a n d n o t v e r y s c i e n t i f i c a p p l i c a t i o n o f d e s t r u c -

t i ve t e s t i n g t o reveal weaknesses i n d e s i g n c o n c e p t s . D e s t r u c t i v e t e s t i n g

i s s t i l l widely used and i s p a r t i c u l a r l y e f f e c t i v e i n t h e areas of mechani-

ca l and s t r u c t u r a l e n g i n e e r i n g w h e r e f a i l u r e ra tes may b e a c c e l e r a t e d i n

well understood ways by applying excessive loads, stresses, hea t , e t c .

Another way o f o b t a i n i n g i n f o r m a t i o n a b o u t f a i l u r e ra tes i s by l i f e

t e s t i n g many similar un i t s unde r no rma l ope ra t ing cond i t ions . Th i s

p o l i c y i s the one more usually employed when i t i s u n c l e a r how t o accel-

e ra te component f a i l u r e i n a predictable manner .

F o r t h e e s t i m a t i o n o f t h e r e l i a b i l i t y o f SIFT, ne i the r o f t he above

m e t h o d s o f t e s t i n g c a n b e u s e f u l l y a p p l i e d t o t h e t o t a l s y s t e m f o r two

r e a s o n s . F i r s t , i t i s not clear how t o "abuse" the sys tem in such a way

t h a t a p r e d i c t a b l y i n c r e a s e d ra te o f f a i l u r e would occur. Second, the

d e s i g n - g o a l f a i l u r e r a t e f o r t h e t o t a l s y s t e m i s so low (-10-9/hour) t h a t

a c t u a l l i f e t e s t i n g would be prohibi t ively s low and expensive,

A s an a l ternat ive approach, one can decompose the SIFT sys t em in to

p a r t s e a c h o f which has known r e l i a b i l i t y p r o p e r t i e s o r i s s u s c e p t i b l e

t o separate r e l i a b i l i t y a n a l y s i s .

Then the in t e rac t ion be tween t hese parts c a n b e a c c u r a t e l y d e s c r i b e d ,

one can make conf iden t p red ic t ions abou t t he behav io r o f t he sys t em as a

whole. Except for a c h o i c e o f a n a l y t i c t e c h n i q u e s , t h i s p a r t i t i o n i n g

scheme i s the e s sence o f a r e l i a b i l i t y model, and our conclusions w i l l

depend on the accuracy of our knowledge about the behavior of i t s compo-

n e n t p a r t s . What w e hope t o l e a r n f r o m t h e r e l i a b i l i t y model w i l l be

o u t l i n e d i n t h e f o l l o w i n g s e c t i o n .

140

C. The Reliability Model

We deal with a physical system (a collection of hardware and pro-
grams) and a complicated set of possible "events." For convenience one

can distinguish between

Normal events; e.g., initiation and termination of scheduled
programs, changes in flight phase, pilot intervention, etc.

Abnormal events; e.g., hardware failure or transient errors.

The partitioning of the system could be carried out to any level of

detail, but for purposes of the following analysis we distinguish proces-

sors (with their associated memories) and individual communication busses

as component parts subject to separate reliability analysis. For these

system-hardware units good reliability estimates exist, based on total

count of active devices and much experience with similar electronic
equipment. For example the failure-rate of a typical processor in the
SIFT system is estimated with some confidence as about 10 per hour,

while failure of a bus-unit is estimated to be 10 per hours on the basis

of a component-count of approximately 10% that of a processor.

-4

-5

As part of the SIFT system, programs may also be partitioned into
subsets for reliability analysis. The main interaction between programs
and hardware from a reliability standpoint concerns the duration and

criticality of the programs. The role of program criticality is dis-

cussed elsewhere in this report, however, it is clear that short, rapidly

executed programs have less likelihood of being disturbed by transients

or onset of hardware failure. In particular, reliability estimates turn

out to be sensitive to the execution time of a program necessary to re-

covery or reconfiguration of the system.

We intend to model the functioning of the SIFT system by a finite

set of distinct "states" with transitions between states occuring in

response to particular events. A state of the system can represent any
condition that seems important to consider in the reliability analysis.

For example a specific state of the model may represent the combined
conditions that one processor has failed and that a reconfiguration pro-
gram is currently being executed on a different processor. Of the events

141

t ha t cause t r ans i t i ons be tween s ta tes of the model (pa r t i cu la r ly abnorma l

e v e n t s) , many w i l l occur a t random times. We want t o a n a l y z e the model t o

d e t e r m i n e t h e p r o b a b i l i t i e s t h a t t h e s y s t e m w i l l be found i n a des igna ted

s t a t e a t o r b e f o r e o r a f t e r a p a r t i c u l a r time. I n p a r t i c u l a r we are i n -

t e r e s t e d i n t h e p r o b a b i l i t y t h a t t h e s y s t e m w i l l have reached the FAIL

s t a t e be fo re t he mi s s ion time 2 has e l apsed .

I n a d d i t i o n t o t h e estimate o f - s y s t e m - f a i l u r e p r o b a b i l i t y t h e a b o v e

model y i e l d s several o t h e r u s e f u l t y p e s o f i n f o r m a t i o n .

The p r o b a b i l i t y o f r e a c h i n g c o n d i t i o n s (s t a t e s) t h a t would
r e q u i r e s p e c i a l a c t i o n s t o b e t a k e n . F o r e x a m p l e t h e abandonment
of some n o n c r i t i c a l t a s k s o r some fo rm o f p i lo t i n t e rven t ion .

D i f f e r e n t i a l f a i l u r e r a t e s . That i s , t h e f a i l u r e ra te o f t he
s y s t e m a f t e r i t has been i n o p e r a t i o n i n say n hours . This
i s i m p o r t a n t i n e s t a b l i s h i n g a pol icy for equipment maintenance
and replacement.

0 Mean t ime be tween fa i lures (MTBF) f o r t h e s y s t e m o r p a r t s of
i t . T h i s i s i n f o r m a t i v e i f u s e s are contemplated where no
maintenance i s f eas ib l e , e .g . , an ex tended mi s s ion i n space .

D. Analy t ica l Techniques

The most g e n e r a l f o r m u l a t i o n o f t h e r e l i a b i l i t y model t h a t w e u se

c o n s i s t s o f a d i r ec t ed g raph whose ver t ices cor respond to s ta tes o f t he

s y s t e m , w h i l e e d g e s c o r r e s p o n d t o p o s s i b l e t r a n s i t i o n s . I n t h i s c a s e

e a c h t r a n s i t l o n h a s a n a s s o c i a t e d r a t e t h a t may be time dependent and

a l s o h i s t o r y d e p e n d e n t . T h a t is, t h e t r a n s i t i o n r a t e o f a p a r t i c u l a r

edge might depend upon the manner i n which the a t tached state-vertex

was reached. To analyze such a s y s t e m r e q u i r e s t h e s o l u t i o n o f a

s y s t e m o f n o n l i n e a r d i f f e r e n t i a l e q u a t i o n s f o r w h i c h r o u t i n e a n a l y t i c a l

methods do no t ex i s t . Consequen t ly , w i th t h i s t ype o f model, r ecour se

would have t o be made to numer ica l in tegra t ion programs, and to the

computation of many p a r t i c u l a r cases t o d e t e r m i n e how so lu t ions behave

w i t h r e s p e c t t o d i f f e r e n t p a r a m e t e r s o f t h e model.

F o r t u n a t e l y , w e w i l l no t need such comple t e gene ra l i t y in d e a l i n g

w i t h t h e SIFT r e l i a b i l i t y m o d e l s . One s i m p l i f i c a t i o n i s t h a t we w i l l

a lways be ab le to choose the s t a t e s of the model i n such a way tha t the

probabi l i ty o f occupying a s ta te i s independent o f how t h e s t a t e was

142

reached. For example, if we designate one state of the model to repre-

sent the condition that two processors have failed, it should be imma-
terial which one failed first (history independence). Another simplifi-

cation occurs because most of the transitions of our models are in re-

sponse to "abnormal" events of stochastic nature, like component failure,

whose failure rates are constant (time independence). Note that this

assumption is approximately true for semiconductor devices but would not

be true for say the clutch in an automobile which wears out with con-

tinued use.

With both of the foregoing simplifications, our reliability model

falls into the category of a finite-state, continuous-time, simple

Markov process. For such Markov processes, there are elegant and

powerful methods of obtaining complete closed-form solutions. When
transition rates are time dependent (but not history dependent), as will

be the case if a transition depends on say the fixed execution time of a

program, then the model corresponds to a semi-Markov process.

Here a variety of solution techniques have been suggested in the
literature. For our purpose it seems very desirable to retain the

simplicity of the pure Markov model and to have a uniform analytic
procedure that can be applied in all cases. For this reason, the

method we favor is to approximate the behavior of time-dependent state-
transitions with a collection of redundant states having constant

transition-rates, and whose collective behavior simulates the desired
time dependence. This artifice has been called "the method of stages"

and a discussion of its use may be found in Reference 1. For those

unfamiliar with Markov processes a short description with applications

to the modeling problem is presented in the appendix to this report.
The appendix also illustrates the method of stages as applied to the

modeling of a fixed-duration event and a transient event.

We wish to find the most convenient and potentially useful way of

obtaining the desired insight and the actual numerical results from a
given SIFT model. The Markov-process description of the model yields a

system of linear, first-order, constant-coefficient differential equations

that completely determine all of the state-transition probabilities as a

143

func t ion o f time. I n t h e u s u a l f o r m u l a t i o n , t h e s e r e l a t i o n s are c a l l e d

t h e Chapman-Kolmogorov d i f f e r e n t i a l e q u a t i o n s . S i n c e w e are more i n -

t e r e s t e d i n t h e p o s s i b i l i t y o f o c c u p a t i o n o f p a r t i c u l a r states o f t he

model, w e w i l l cons ider a s l i g h t l y d i f f e r e n t set o f d i f f e r e n t i a l e q u a -

t i o n s t h a t r e l a t e o c c u p a n c y p r o b a b i l i t i e s r a t h e r t h a n t r a n s i t i o n p r o b a -

b i l i t i e s . The system of equat ions i s

where P q (t) i s the p robabi l i ty o f occupying s t a t e q a t time t, and a

b . a r e t h e (c o n s t a n t) t r a n s i t i o n - r a t e s a s s o c i a t e d w i t h e d g e s e n t e r i n g

s t a t e q from s t a t e i and leav ing s tage q t o s ta te j , r e s p e c t i v e l y (f o r

a d e r i v a t i o n o f t h e s e r e l a t i o n s see the appendix) .

i’

3

A s i s well known, the so lu t ion o f a sys tem of equa t ions l ike the

above s e t c a n be c a r r i e d o u t by a purely mechanical process. Given an

i n i t i a l v e c t o r o f o c c u p a t i o n p r o b a b i l i t i e s , s a y P = 1 and P = 0 f o r

a l l o t h e r s ta tes , then each P (t) c an be expres sed as the sum
1 q

4

where n i s the number o f s t a t e s i n t h e model, A i a r e numer i ca l coe f f i -

c i e n t s t h a t d e p e n d o n l y on t h e i n i t i a l p r o b a b i l i t i e s , P l (0) ... Pn(0) ,

and A i are the e igenva lues o f t he ma t r ix o f coe f f i c i en t s o f Pi

assoc ia ted wi th the sys tem of equa t ions g iven by (1). T r i v i a l c o m p l i -

ca t ions occu r i f a l l o f t h e e i g e n v a l u e s a r e n o t d i s t i n c t , i n w h i c h c a s e

terms of the form

where k i s the mu l t ip l i c i ty o f an e igenva lue , need t o be included.

14 4

In principle one can rely on standard routines for finding eigen

values and eigen vectors of a finite matrix to solve any particular re-

liability model. One important problem, however, is that expressions
like that of equation (2) can lose almost all of their computational

accuracy when very low failure-rates are involved. To illustrate this

point consider the very over-simplified model of a SIFT system shown in
Figure VII-1.

FIGURE VII-1 A SIMPLIFIED SIFT MODEL

Here we depict a system that begins in state 3 with three active proces-

sors whose individual failure-rates are (per hour). This model shows
a rate of "decay" 3r, into the situation where two processors survive,

followed by a rate of failure into a state where one processor is left,

followed by a rate of failure into a failed state F. Suppose we are

interested in the probability of being in state 1, with one processor

still surviving. Using standard numeric techniques as described above

we could obtain the following expression for this probability,

P (t) = 3e-lt - 6e + 3e-3rt -2rt
1

where the above coefficients might not actually be exact due to round-off

errors. Now if we attempt to evaluate this expression for small rt the
answer may be almost meaningless unless high-precisions arithmetic is

employed throughout all of the calculations. The reason is that each of
the above exponential terms has a value nearly equal to unity. The
value of P (t) for small rt is actually close to 3(rt)2, but this fact

might not be evident from an imprecise evaluation of (3), particularly

for very small values of rt where much of the significant behavior of

the SIFT system occurs.

1

145

A second problem involved in using automatic numeric solution tech-

niques of the eigenvalue-eigenvector type is that the representation of
a solution in a form involving computed numeric coefficients conceals the

way that different parameters of the model interact. Thus, it is more dif-

ficult to determine how particular parameters are affecting the behavior

of the model than it would be if explicit parameterized expressions for

the state occupation probabilities were available.

For these (and other) reasons we prefer to use Laplace Transform

techniques in dealing with the system of equations (1). Using this

approach one can reduce the solution of the system to algebraic mani-

pulation of polynominals in a transform variable 5, that is related to

the probabilities Pi(t) by the transformation
/-a

Pi(t)e dt
.L -st

When the transformation is applied to (l), one obtains a set of linear

equations of the form
n n

or
n

where B stands for the sum of the rates b of edges emanating from state

q. The solutions of this system are simple ratios of polynomials in g
which can be inverted by standard methods to obtain the corresponding

time-dependent solutions for each of the state-occupancy probabilities

i

Pi(t> '

Using this method on the diagram of Figure VII-1 one obtains

PA1 (s) = 6r / (s+3r) (s+2r) (s+r) 2
(7)

from which one can immediately deduce the exact solution already given

in (3). However, the expression (7) can also be seen by inspection to
have approximate value 6r2/s3 for sufficiently large s . So, from

14 6

a knowledge that tn transforms to n!/s one can also conclude by

inspection that P (t) behaves like 3(rt)2 as t-Q. Several simple but

useful relations of this type are mentioned in the appendix.

n+l

1

E. Models and Programs

In this section we will discuss four reliability models of the SIFT
system and describe computational programs based on these models. A

primary assumption is that the principal failure modes of a model corre-
spond to transient or permanent,faults occurring either in a processor/

memory unit or in a communication bus unit. The modeling so far has not
considered a further subdivision of the system components, since strate-

gies for making use of "partially failed" devices have not been considered

in any detail. We also assume that there is no difference in criticality
to the system in the failure of any particular processor or bus. This

assumption may not be strictly true since a processor that is executing
an executive program may be more critical to survival than one employed

in some inessential task. By choosing to ignore the latter possibility

we obtain results that are on the pessimistic or "safe" side of the actual
reliability situation.

The main parameters of the models considered here are the number of

processor/memory units and number of buses available at the start of a

mission, their respective permanent-failure rates, and mission time. Two

other parameters of importance are the expected time to reconfigure the

system after detection of a fault and a measure of the expected degree of

success in diagnosing a transient fault and restoring the system to oper-
ation without loss of equipment. For each model we assume that a failed

state has been reached if less than two processors or buses survive.

This would correspond to a situation in which voting among remaining hard-
ware units would no longer be meaningful.

The models listed below were selected with the intent of discovering
the effects of differing failure modes separately and in combination.

Model I: Permanent faults, instantaneous reconfiguration.

Model 11: Permanent faults, finite reconfiguration time.

147

Model 111: T r a n s i e n t f a u l t s a lone .

Model I V : T rans i en t and pe rmanen t f au l t s w i th f i n i t e
r e c o n f i g u r a t i o n t i m e .

For each of the above models the corresponding Markov-process s ta te -

graph was analyzed using Laplace Transofmr methods to obtain c losed form

s o l u t i o n s (o r a p p r o x i m a t e s o l u t i o n s) f o r t h e p r o b a b i l i t y o f r e a c h i n g t h e

f a i l e d s t a t e as a f u n c t i o n o f m i s s i o n time. T h e s e a n a l y t i c a l e x p r e s s i o n s

are used by several small i n t e r a c t i v e FORTRAN p r o g r a m s t o p r i n t t a b l e s o f

f a i l u r e p r o b a b i l i t i e s f o r a n y d e s i r e d v a l u e s o f t h e model parameters. A

s a m p l e o u t p u t g i v i n g t h e f a i l u r e p r o b a b i l i t i e s f o r a SIFT system composed

from 10 or fewer p rocessors and 7 o r fewer buses under Model I assumptions

i s shown i n T a b l e V I I - 1 . Here t h e sample o u t p u t i s parameter ized wi th

f a i l u r e ra tes o f 10 /hr and 10 / h r f o r p r o c e s s o r a n d b u s f a i l u r e ra tes

r e spec t ive ly , wh i l e t he mi s s ion t i m e was t aken as 10 hour s . These f i gu res

are i n t e r a c t i v e l y s u p p l i e d by the program user .

-4 -5

Cons is tency be tween d i f fe ren t models may be checked by running their

cor responding programs wi th parameter va lues tha t cause one case to de -

g e n e r a t e i n t o a n o t h e r . F o r example Model 11, f o r r e c o n f i g u r a t i o n

time = 0, g i v e s t h e same r e s u l t s as Model I, and Model I V wi th 100%

p r o b a b i l i t y o f t r a n s i e n t r e c o v e r y g i v e s t h e same r e u l t s as Model 11.

For convenience, we have a l so mod i f i ed t he Model I1 and Model I V

programs t o p r o v i d e d i f f e r e n t i a l p r o b a b i l i t i e s o f f a i l u r e . T h a t is, t h e

p r o b a b i l i t y o f f a i l u r e d u r i n g t h e n e x t o n e - h o u r p e r i o d o f a s y s t e m t h a t

s t a r t e d w i t h n processors and 2 buses, as a func t ion o f mi s s ion time.

A t a b l e o f f a i l u r e r a t e s f o r t h e p a r t i c u l a r r e c o n f i g u r a t i o n t i m e of one

second as computed by Model I I A i s shown i n T a b l e V I I - 2 . This informa-

t i o n i s impor t an t i f one mus t make po l i cy dec i s ions conce rn ing when re-

placement o r m a i n t e n a n c e o f d e f e c t i v e u n i t s s h o u l d o c c u r . F o r example,

Table V I I - 2 shows t h a t w i t h t h e a s s u m e d i n i t i a l c o n f i g u r a t i o n several

10 -hour mi s s ions cou ld s a fe ly be unde r t aken w i thou t be tween- f l igh t

m a i n t e n a n c e . A c c o r d i n g t o t h e t a b l e , a f t e r 60 hour s o f ope ra t ion , t he

e x p e c t e d h o u r l y f a i l u r e ra te i s s t i l l on ly 5 x LO-'', which i s w i t h i n

the nominal acceptance va lue o f 10 . -9

148

Table VII-1

SAMPLE OUTPUT

MODEL I. *

PROCESSOR FAILURE RATE: 1E-4

BUS UNITS FAILURE RATE: 1E-5

MISSION TIME, I N HOURS: 10

FAILURE PROBABILITY TABLE :

PRO/BUS 2

2 2 .20~-03

3 2.03E-04

4 2.00E-04

5 2.OOE-04

6 2.00E-04

7 2.00E-04

8 2.00E-04

9 2.00E-04

10 2.00E-04

3

2.OOE-03

3.02E-06

3.40E-08

3.00E-08.

3. ow-08

3.00E-0&

3.00E-08

3.00E-08

3. OOE-Oe.

4

2.OOE-0 j

3.OOE-06

4.OOE-'39

8.99E-12

4.01E-12

'4.00E-12

4.00E-12

4.00E-12

4.00E-12

5

2.00E-03

3.00E-06

3.993-09

4. WE-12

6.4eE-15

5.07E-16

5.00E-16

5.00E-16

5.00E-1 G

6

2. OOE -03

3.OOE-06

3.99E-09

4.993-12

5.98E-15

7.03E-1 e

6.79E-20

6.00E-20

6.00E-20

7

2. OOE-OS

3.00E-06

j. 99E-09

4.99E-12

5.9EE-15

6 . gr/E-1 8

7. WE-2 1

1.60E-25

7.01E-24

T a b l e V I I - 2

FAILURE RATES FOR RECONFIGURATION TIME
OF ONE SECOND AS COMPUTED BY MODEL I I A

MODEL 1 1 - A . *

PROCESSOR FAlLUHE RATE: 1E-4

BUS UNITS FAILURE RATE: 1E-5

NO. PROCESSORS: 5

NO. BUSSES : 4

RECONFIG. TIME, iN SEC: 1

FAlLURE PRCBABILITY TABLE:

TINE: €iR. FAiL. PROB. H@URLY RATE.

1
2
4
6
8

10
12
16
20
40
60
80

100
200
4 00

5.59E-11
1.12E-10
2.24E-10
5.37E-10
4.51E-10
5.67E-10
6.87E-10
9 . 4 2 ~ 1 0
1.23E-09
3.75E-0 9
1.OGE-08
2.65E-06
5.elE-08
7-993-07
1.17E-05

5.59E-11
5.59E-11
5.61E-11
5.65E-11
5. TZE-11
5. EOE-11
6.04E-11
6.60E-11
7. %E-1 1
1.96E-10
5.10E-10
1. 11E-09
2.08E-09
1.5sE-08
1.13E-07

DATA EXTRACTED FROM MODEL 11.

150

F. Computa- t iona l Resul t s and In te rpre ta t ions

The r e l i a b i l i t y m o d e l s r e f e r r e d t o a b o v e y i e l d q u a n t i t a t i v e d a t a o n

the s epa ra t e and combined e f f e c t s o f f i n i t e r e c o n f i g u r a t i o n time and i m -

p e r f e c t t r a n s i e n t r e c o v e r y o n a SIFT s y s t e m t h a t a l s o s u f f e r s s p o n t a n e o u s

permanent faul ts . Model I depic t s the mos t idea l ized (and mos t op t imis-

t i c) s i t u a t i o n i n which only permanent faul ts are cons ide red . Pe r fec t

reconf igura t ion s t ra teg ies and t rans ien t recovery schemes cannot improve

t h e r e l i a b i l i t y estimates o f Model I unless "sa lvage" o f working par t s

o f t he sys t em a t a level smaller than a processor/memory o r b u s - u n i t i s

f e a s i b l e . We have no t cons ide red t he l a t t e r p o s s i b i l i t y i n t h i s a n a l y s i s .

A s t a t e - d i a g r a m f o r Model I i s shown i n F i g u r e V I I - 2 . S t a r t i n g

wi th 2 processors and m b u s s e s i n t h e i n i t i a l s t a t e , w e assume cons tan t

f a i l u r e ra tes o f p and g f o r e a c h o f t h e s e d e v i c e s r e s p e c t i v e l y . It i s

assumed t h a t a f a i l e d s t a t e w i l l have been reached on ly i f less than two

p r o c e s s o r s o r b u s s e s s u r v i v e a f t e r a miss ion time o f d u r a t i o n T.

STATE 1

FIGURE VII-2 MODEL I STATE-DIAGRAM

151

I n t h e r e c t a n g u l a r a r r a y o f s ta tes r e p r e s e n t i n g t h e s u r v i v i n g num-

b e r s o f p r o c e s s o r s a n d b u s s e s r e s p e c t i v e l y , n o t e t h a t t h e f a i l u r e - r a t e s

. a s s o c i a t e d w i t h e a c h ex i t arrow are p r o p o r t i o n a l t o t h e number of re-

m a i n i n g u n i t s o f t h e same type. The s ta tes des igna ted F r e p r e s e n t

f a i l u r e .

Obse rve t ha t t he model corresponds to one in which processor and

b u s f a i l u r e are cons idered to be independent and uncorre la ted events .

T h e r e f o r e a n a n a l y s i s o f f a i l u r e p r o b a b i l i t y c a n b e c a r r i e d o u t w i t h o u t

"so lv ing" for each s t a t e occupancy probabi l i ty . However, w e r e t a i n t h e

g e n e r a l i t y o f t h e f u l l M a r k o v - p r o c e s s r e p r e s e n t a t i o n b e c a u s e w e might

wish i n some l a t e r a n a l y s i s t o c o n s i d e r some s p e c i a l a c t i o n t o b e t a k e n

i n o n e o f t h e p a r t i c u l a r s t a t e s of F igure VII -2 . In each of the subse-

quent models to be d i scussed , a s imilar s t a t e graph i s assumed, except

t h a t t h e t r a n s i t i o n s b e t w e e n s ta tes are compl i ca t ed by t he i n se r t ion o f

i n t e r m e d i a t e s ta tes t h a t r e p r e s e n t t h e e f f e c t s o f r e c o n f i g u r a t i o n d e l a y s

o r t r a n s i e n t - f a u l t r e c o v e r y .

An a n a l y s i s o f Model I y i e l d s c l o s e d - f o r m e x p r e s s i o n s f o r f a i l u r e

p r o b a b i l i t i e s p a r a m e t e r i z e d i n terms o f p r o c e s s o r / b u s f a i l u r e ra tes and

miss ion time as shown i n T a b l e V I I - 1 , where p = 10 , q = 10 and T =

10 hour s . Th i s t abu la t ion shows t h e i n t u i t i v e l y e x p e c t e d r e s u l t t h a t

s u r v i v a l p r o b a b i l i t y f o r a system having few processors or few busses i s

n o t s i g n i f i c a n t l y i m p r o v e d by having a l a r g e number o f t h e o t h e r t y p e o f

u n i t a v a i l a b l e .

-4 -5

To i l l u s t r a t e , r e f e r r i n g t o T a b l e V I I - 1 , w e see t h a t w i t h a n i n i t i a l

c o n f i g u r a t i o n e m p l o y i n g f o u r p r o c e s s o r s t h e s y s t e m f a i l u r e p r o b a b i l i t i e s

are e s s e n t i a l l y i d e n t i c a l i f f o u r o r more busses are a v a i l a b l e i n i t i a l l y .

S i m i l a r l y i f o n l y t h r e e b u s s e s are i n i t i a l l y a v a i l a b l e t h e n i t does no

good to have more t han f i ve p rocesso r s . The sys t em r e l i ab i l i t y can be

s a i d t o b e p r o c e s s o r - l i m i t e d o r b u s - l i m i t e d . It t h e r e f o r e makes sense

t o t h i n k o f "enough" b u s s e s f o r a g iven number of processors (and con-

v e r s e l y) .

The c a l c u l a t e d v a l u e s o f T a b l e V I I - 1 are t y p i c a l . I n t h i s p r o t o t y p e

case, a SIFT system composed of four processors and four buses i s seen

152

t o have a 1 0 - h o u r m i s s i o n p r o b a b i l i t y o f f a i l u r e o f 4 x 10 . On a per - -9

h o u r f a i l u r e rate b a s i s t h i s would be 4 x which i s w i t h i n t h e

FAA a c c e p t a b l e l i m i t o f 1 x lO-’/hour. The s i t u a t i o n i s not improved

by adding another bus, which would change the fa i lure ra te t o 3.99 x 10 .
However, t h e a d d i t i o n o f another processor (making the count 5 and 4)

l e a d s t o a f a i l u r e ra te of about which again i s n o t s i g n i f i c a n t l y

improved by add ing ye t more processors.

-10

F o r t h i s model, t h e s i g n i f i c a n t f e a t u r e s c a n b e summerized by the

g raph o f F igu re VII-3, which shows sys tem-fa i lure p robabi l i ty p lo t ted

10-l8

1 0 - l ~
>-
k
=!
m

0
a
a 10-12

a

2 a

Q,

w
3

U

1 o - ~

1 o4

1 o - ~
1

P = NUMBER OF PROCESSORS

10 100 1000

MISSION TIME - hours

10.000

FIGURE V I I S MODEL I BEHAVIOR

15 3

a g a i n s t m i s s i o n time f o r v a r i o u s numbers o f p rocesso r s and buses . In

p a r t i c u l a r , t h e p o i n t c o r r e s p o n d i n g t o a mis s ion time o f 100 hours and

a f a i l u r e p r o b a b i l i t y o f lo-'' (10 /hour) i s s e e n t o b e b a r e l y a c h i e v a b l e -9

w i t h 6 processors and 4 buses ; the need i s f o r n e a r l y 7 and 5 r e s p e c t i v e l y .

I n Model I1 w e c o n s i d e r t h e e f f e c t t h a t a f i n i t e r e c o n f i g u r a t i o n

t i m e has i n deg rad ing t he pe r fo rmance o f Model I. Here i t i s assumed

t h a t upon d e t e c t i n g t h e p r e s e n c e o f a n e r r o r i n a p rocesso r o r bus some

d iagnos t ic and/or reconf igura t ion programs of f ixed dura t ions mus t run

be fo re s a fe sys t em ope ra t ions can be r e sumed . I f ano the r p rocesso r o r

b u s f a i l u r e o c c u r s d u r i n g t h i s s h o r t i n t e r v a l o f time i t could cause

ser ious p roblems in recovery . For the purpose o f Model I1 w e cons ide r

t h e l a t t e r e v e n t t o b e f a t a l . Therefore , Model I1 p r e s e n t s a r a t h e r

pessimistic i n t e r p r e t a t i o n of f a i lu re p r o b a b i l i t i e s d u e t o n e a r l y s i m u l -

t aneous permanent fau l t s . The s ta te -d iagram of F igure VII -2 i s a l s o

a p p r o p r i a t e t o t h i s case i f each t r a n s i t i o n i s r e i n t e r p r e t e d t o c o n t a i n

a d e l a y - s t a t e o f f i x e d d u r a t i o n a n d a d i r e c t e n t r y t o t h e f a i l e d s t a t e

as shown i n F i g u r e V I I - 4

I In-llp

FIGURE VI14 MODEL 11 STATE-DIAGRAM

The f i x e d d e l a y s ta tes l a b e l e d T i n F igu re VII-4 are handled in the

manner desc r ibed i n the appendix t o th i s r e p o r t . A c t u a l l y , w e o b t a i n

exact c losed - fo rm expres s ions fo r t he va r ious s t a t e -occupancy p robab i l i t i e s

just as was done for Model I .
154

A t yp ica l ou tpu t f rom the Model I1 program i s shown i n T a b l e VII-3.

Here again, we have taken processor and bus fa i lure ra tes of 10 and

10 as r e a s o n a b l e v a l u e s w i t h a miss ion t i m e o f 10 hours. The value

of T, t h e r e c o n f i g u r a t i o n t i m e , s t a t e d as 10 seconds i s a gross over -

estimate of the p robable time for such a procedure, which might take a t

the most perhaps 100 m s . We t a k e t h e l a r g e r v a l u e o f T t o i l l u s t r a t e t h e

e f f e c t s o f t h e f i n i t e r e c o n f i g u r a t i o n t i m e o n t h e r e s u l t s o f Model I.

-4
-5

From an i n spec t ion o f Tab le VII-3 it can be seen tha t in each row

and column corresponding to a f i x e d number o f p r o c e s s o r s (b u s e s) , i n

s y s t e m f a i l u r e p r o b a b i l i t i e s f i r s t d i m i n i s h and then increase wi th l a rger

number buses (p rocesso r s) . The i n t e r p r e t a t i o n o f t h i s r e su l t can be under-

s tood by cons ide r ing ou r p rev ious a s sumpt ion t ha t a s y s t e m f a i l u r e would

o c c u r i f a n y p a i r o f f u n c t i o n a l u n i t s f a i l e d w i t h i n t i m e r. Obviously,

t h i s p o s s i b i l i t y i n c r e a s e s w i t h t h e number o f a c t i v e p r o c e s s o r / b u s u n i t s

involved. However, t h e d i s t r i b u t i o n o f t a s k s o v e r many p rocesso r s would

a l l o w v o t i n g o v e r t h e r e s u l t s o f s e v e r a l u n i t s i n s t e a d o f s a y t h r e e - -

so t h a t some d o u b l e f a i l u r e s m i g h t i n f a c t b e t o l e r a t e d . T h i s means t h a t

t h e r e s u l t s o f Model I1 may be cons idered to be pess imis t ic . F igure VII-5

shows how f a i l u r e p r o b a b i l i t y v a r i e s w i t h e x t e n d e d m i s s i o n t i m e s w i t h re-

c o n f i g u r a t i o n time as a parameter. The c u r v e s r e p r e s e n t a n i n i t i a l c o n -

f i g u r a t i o n o f f i v e p r o c e s s o r s a n d 4 buses.

The d a s h e d l i n e r e p r e s e n t i n g z e r o r e c o n f i g u r a t i o n t i m e cor responds

to da ta ob ta ined f rom Model I. The e f f e c t s o f a f i n i t e r e c o n f i g u r a t i o n

t i m e a r e m o s t a p p a r e n t f o r s h o r t m i s s i o n times where f a i l u r e p r o b a b i l i t y

would have been very low accord ing to the assumpt ions o f Model I.

For very long mission times f a i l u r e p r o b a b i l i t y is l i m i t e d b y t h e

numbers o f ava i l ab le p rocesso r s and buses and becomes independent of the

v a l u e o f T. In t he r ange o f mi s s ion times nea r 10 hours , there i s a n

inc rease o f f a i lu re p robab i l i t y o f abou t one o rde r o f magn i tude fo r each

o rde r o f magn i tude i nc rease i n T . It should be no ted tha t for about a

10 hour mission and a r e c o n f i g u r a t i o n time of 10 seconds , t he f a i lu re

p r o b a b i l i t y i s about 5 x 1 0 o r 5 x LO-" on a per -hour bas i s .
-9

155

Table VII-3

TYPICAL OUTPUT FROM MODEL I1 PROGRAM

MODEL 11. Q

PROCESSCR FAILURE RATE: 1E-4

BUS UNITS FAILURE RATE: 1E-5

MISSION TIME, IN HOURS: 10

RECONFIG. TIME, I N SEC: 10

FAILURE PROBABILITY TABLE :

PRO/BUS 2

2 2 . 2 0 ~ - 0 3

3 2.03E-04

4 2.00E-04

5 2.00E-04

6 2.OOE-04

7 2.00E-04

a 2.00E-04

9 2.00E-04

10 2.0OE-04

1
d

2.0013-03

3.03.E-06

3.726-08

3.56E-08

3.83E-08

4 . 17E-08

4.56E-OR

5.OOE-08

5.50E-0 8

4

2.00E-03

3.OOE-06

7.363-09

5.593-09

8.36E-09 '

1 . 17E-08

1.563-08

2.00E-08

2.50E-08

5 6

2.OOE-03 2.OO.L-03

3.00E-06 3.OOE-06

7.38E-09 7 . 4 0 ~ ~ - 0 9

5.6113-09 5.64E-09

8.383-09 8.41E-09

1.17E-08 1.17E-08

1.56E-08 1.56E-08

2.00.E-08 2 . 0 1 ~ - 0 8

2.50E-08 2 . m - 0 8

7

2.OOE-03

3.00E-06

7.44E-09

5 . 6 7 ~ - 0 9

8.44E-09

1.18E-08

1.5'jE-08

2.01E-08

2 . 5 1 ~ 0 8

* FINITE RECONFIGURATION TIME.

156

I

1 0-l4

1 0-13

10-1
>
k
2 ; 10-l0
z
~1

n

a

2 a
3

U
1 o-8

1 o - ~

1 o4

1 o - ~
1

\ I I
\
\ - \ r = o . PROCESSORS = 5

\
\ BUSSES = 4

- \
\

7 = 0.1 \ 7 (IN SECONDS)

10 100

MISSION TIME - hours

1000

FIGURE VII-5 MODEL 11 BEHAVIOR

Therefore , 10 seconds would be an acceptable reconfigurat ion t i m e f o r

this combinat ion of processors and buses . Actual ly w e have es t imated

t h a t r e c o n f i g u r a t i o n s h o u l d t a k e no more than a few mi l l i s econds , so t h a t

a f a i l u r e p r o b a b i l i t y a b o u t 100 times smaller than the above f igure would

b e e x p e c t e d i n t h i s case.

Model I11 was des igned to measure t h e e f f e c t s o f i m p e r f e c t r e c o v e r y

from t r a n s i e n t e r r o r s . A s such, i t does not provide a r e a l i s t i c model o f

SIFT s i n c e i t assumes that no permanent f a u l t s o c c u r . The u s e f u l n e s s o f

Model I11 was mainly to have an independent computat ional check on the

r e s u l t s o f Model I V which includes Model I11 as t h e special case where
bo th p rocesso r and bus pe rmanen t f a i lu re r a t e s have va lue ze ro .

15 7

I I I I ...I_ .- "-

Model IV is a superposition of Models I, 11, and 111. It attempts

to account for the effects of permanent faults (randomly occurring),

finite reconfiguration time and transient recovery. The state transitions

associated with one node of the state diagram are shown in Figure V I I - 6 .

...

'Designates probabilities (not rates).

.

FIGURE VII-6 MODEL IV STATE-DIAGRAM

For the typical node of the state-transition graph of Model IV

there are these possibilities:

a. A transient error may occur with average rate

or rb, causing a transition to one of the two states
labeled R in Figure VII-6. Following this occurrence

we assume that detection and correction in a return to

the original state. Otherwise, we conclude that a per-

manent fault has occurred and proceed to a state with

one less processor or bus in the active system.

158

b. A permanent faul t may occur wi th average ra tes p o r g

(a s i n Model 11) caus ing a t r a n s i t i o n t o o n e o f t h e

s ta tes having one less p r o c e s s o r o r b u s S f c o n f i g u r a t i o n

i s s u c c e s s f u l . I f two permanent f a u l t s o c c u r w i t h i n

time r, t h e FAIL s ta te i s en te red .

S ince Model I V has s even pa rame te r s , i nc lud ing two permanent f a i l u r e rates

(f o r p r o c e s s o r s a n d b u s e s r e s p e c t i v e l y) , two c o r r e s p o n d i n g t r a n s i e n t f a i l -

u r e rates r e c o n f i g u r a t i o n t i m e , t r a n s i e n t r e c o v e r y p r o b a b i l i t y , a n d

miss ion tirne--it i s h a r d t o p r e s e n t a comprehens ive p ic ture o f how a l l

t h e s e p a r a m e t e r s i n t e r a c t . The b e s t way t o e x p l o r e t h i s s e v e n - d i m e n s i o n a l

space (nine dimensions of processor and bus counts are inc luded) i s t o r u n

t h e i n t e r a c t i v e Model I V FORTRAN program using parameter values near the

r e g i o n o f i n t e r e s t . We have a l r eady focused a t t en t ion on one set of pa-

rameter values t h a t seem t o b e r e a s o n a b l e o r t y p i c a l f o r t h e p r o p o s e d

SIFT system, i . e . , p = 10 q = l f 5 , T = 10 hours , T = 100ms, m = 5

p rocesso r s , n = 4 buses. To see how t r a n s i e n t e r r o r s c a n a f f e c t f a i l u r e

p r o b a b i l i t i e s w e may assume the above values and compute Model I V f o r

v a r i o u s v a l u e s o f t r a n s i e n t r e c o v e r y p r o b a b i l i t y a n d t r a n s i e n t e r r o r rates.

Resu l t s co r re spond ing t o one cho ice o f r ecove ry p robab i l i t y (. 9) and t ran-

s i e n t e r r o r ra te (10) are shown i n T a b l e VII-4.

-4

-5

A composi te g raph showing the e f fec t o f d i f fe ren t assumpt ions about

recovery r a t e and t r a n s i e n t e r r o r r a t e i s shown i n F i g u r e V I I - 7 . It i s

o b s e r v e d t h a t t h e e f f e c t s o f t r a n s i e n t s are r a the r c lo se ly approx ima ted

by s imply adding to the p rocessor and bus permanent fa i lure rates a ra te

e q u a l t o (l - p t r .) times t h e c o r r e s p o n d i n g t r a n s i e n t f a i l u r e rate.
J-

In F igu re VI I -7 t he cu rve l abe led A r e p r e s e n t s t h e s i t u a t i o n i n w h i c h

t r a n s i e n t r e c o v e r y is s u c c e s s f u l 100% of t h e time i . e . , ptr;k = 1.

Curve B r e p r e s e n t s a case w h e r e t r a n s i e n t e r r o r rates are assumed t o b e

i d e n t i c a l w i t h p e r m a n e n t f a u l t ra tes a n d t h e p r o b a b i l i t y of recovery i s

zero. Thus, for any recovery probabi l i ty between 0 and 1 t h e f a i l u r e

p r o b a b i l i t y o f t h e s y s t e m l ies between the curves A and B--and very close

t o A f o r h i g h r e c o v e r y p r o b a b i l i t i e s . The curve D r ep resen t s ze ro p roba -

b i l i t y o f r e c o v e r y from t r a n s i e n t s o c c u r r i n g a t 10 times t h e ra te o f

159

Table VII-4

TRANSIENT RECOVERY PROBABILITY AND TRANSIENT ERROR RATES

NODEL i V .

PROCESSOR PERMANENT FAILURE RATE: 1E-4

PROCESSOR TRANSIENT FAILURE RATE: 1E-5

BUS UNITS PERblANENT FAILURE RATE: 1E-5

BUS UNITS TRANSIENT FAILURE RATE: 1E-5

MISSION TIME, HOURS: 10

RECONFIG. TiME, 1N SEC: 0.1

RECGVERY PROBAGILlTY: 0 .9

FAILURE PROBABILlTY TAELE :

PRO/BUS 2

2

3

4

5

6

7

8

9

10

2.24E-03

2 .23 -04

2.20E-0 4

2.20E-04

2.20E-04

2.20E -04

2.20E-04

2.20E-04

2.20E-04

3

2.02E-03

3.09E-06

4.04E-08

3.64E-08

3. €4E-08

3.64E-0 8

2.65E-08

3.65E-08

3.65E-08

4

2.02E-0 3

3.06E-06

4. 15E-Cg

6.75E-11

9.07E-11

1.25E-10

l.€QE--10

2.10E-10

2.60E-10

5

2.02E-03

3.06E-0 6

4 . 15E-09

6.25E-11

8.56E-11

1.20E-10

1.59E-10

2.04E-10

2.55E-10

6

2.02E-OS

3.06E-.O6

4.15E-09

0.28E-11

8.59E-11

1.20E-10

1.60E-10

2.05E-10

2 . 5 6 ~ - 1 0

7

2.02E-03

3.06E-06

4. 15E-09

6.32E-11-

8.63E-11

1.20E-10

1.60E-10

2.05E-10

2.5615-10

* RECONFIGURATION WITH TRANSiENT RECOVERY.
(UNCORRELATED BETKEEN DEVICES)

160

1 0 - l ~ I I 1
10-l2 t PROCESSORS = 4

BUSSES = 5
RECONFIGURATION TIME = 100 rns

1 0-1 ’

MISSION TIME - hours

FIGURE VII-7 MODEL IV BEHAVIOR

permanen t f au l t s . F ina l ly , cu rve C r e p r e s e n t s a 70 p e r c e n t p r o b a b i l i t y

o f r e c o v e r i n g f r o m t r a n s i e n t e r r o r s a l s o o c c u r r i n g a t 10 times t h e perma-

n e n t f a i l u r e rate.

We do n o t p r e s e n t l y h a v e r e l i a b l e d a t a o n t h e e x p e c t e d rates f o r

t r a n s i e n t f a u l t s , b u t t h e rates c o v e r e d i n F i g u r e VII-7 are probably

h i g h e r t h a n t h o s e t h a t would occur i n p r a c t i c e . O b s e r v e t h a t e v e n w i t h

the h igh ra tes o f 10 a n d f o r p r o c e s s o r a n d b u s t r a n s i e n t e r r o r s ,

t h e s y s t e m f a i l u r e ra te f o r a 10 hour mission i s about 3 x 10 . T h i s

is well wi th in the nominal 10 p e r h o u r f a i l u r e ra te cons idered satis-

-3

-8

- 9

f a c t o r y by t h e FAA.

161

REFERENCE

1. D. R. Cox and H . D. M i l l e r , The Theory of Stochastic Processes ,
Wiley (1965), p p . 187-189.

162

V I 1 1 THE HIERARCHICAL DESIGN METHODOLOGY

T h i s s e c t i o n was p rev ious ly i s sued as Technica l Memo No. 6 , It is

a tu to r i a l desc r ip t ion o f t he so f tware des ign me thodo logy t ha t i s be ing

employed i n t h e d e s i g n o f t h e SIFT computer and other software systems.

T h i s p a r t i c u l a r a p p r o a c h i s a n i n s t a n c e and an extension of what has come

t o b e c a l l e d " s t r u c t u r e d programming." It has been developed i n i t s pres-

ent form mainly a t SRI f o r t h e c r e a t i o n o f l a r g e and complex programs,

i nc lud ing ope ra t ing sys t ems .

Th i s new methodology a p p e a r s t o have cons ide rab le gene ra l i t y , bu t

f o r t h i s i n t r o d u c t o r y d e s c r i p t i o n o n l y t h o s e aspects t h a t are r e l e v a n t t o

t h e SIFT computer design are covered in d e t a i l . Emphasis i s placed on

c o n c e p t s t h a t are e i ther fundamenta l bu t unfami l ia r , o r are e s p e c i a l l y

c r i t i c a l i n the SIFT computer.

The new methodology claims s e v e r a l s i g n i f i c a n t a d v a n t a g e s o v e r c o n -

ven t iona l so f tware des ign t echn iques , namely

The costs of program product ion are reduced.

The f i n a l program i s more amenable to formal p roof o f
c o r r e c t n e s s t h a n a program developed on an ad hoc basis.

The r e l i a b i l i t y o f t h e r e s u l t a n t program i s improved.

The program i s s p e c i f i e d i n a way tha t enhances i t s
u n d e r s t a n d a b i l i t y .

The program i s f l e x i b l e t o f u t u r e d e s i g n m o d i f i c a t i o n s .

The program i s c r e a t e d i n s u c h a way t h a t i t may be aug-
mented t o h a v e a d d i t i o n a l special proper t ies - -e .g . ,

- Secur i ty p rov i s ions can be added t o p reven t unau thor -
i z e d access, l eakage o r mod i f i ca t ion o f i n fo rma t ion .

- T h e o p e r a t i o n a l r e l i a b i l i t y c a n b e a s s e s s e d q u a n t i t a -
t i v e l y .

Most o f these fea tures are impor tan t des ign ob jec t ives o f the SIFT com-

p u t e r .

. ,

Large and d i f f icu l t p roblems of any type- -bas ic research , engineer -

ing des ign , p roduct deve lopment , and product o rganiza t ion- -are invar iab ly

handled by some so r t o f decompos i t ion of t h e large p rob lem in to several

smaller ones. Of t h e many possible decomposi t ions that could be used,

one i s n o r m a l l y s e l e c t e d f o r w h i c h t h r e e c o n d i t i o n s are s a t i s f i e d :

(1) Each smaller problem i s well def ined , s o t h a t t h e r e
i s no ambigui ty about whether a proposed so lu t ion i s
rea lLy a s o l u t i o n .

(2) The decomposition is comple te - - tha t i s , s o l u t i o n s t o
a l l o f t h e smaller problems w i l l b e S u f f i c i e n t t o
s o l v e t h e l a r g e o n e .

(3) The smaller problems are easier t o s o l v e t h a n t h e large
one.

The s m a l l problems can be fur ther decomposed a c c o r d i n g t o t h e same con-

d i t i ons . Th i s decompos i t ion may be repeated as o f t e n as n e c e s s a r y u n t i l

on ly r ead i ly r e so lved ques t ions , tests, measurements o r expe r imen t s re-

main. I f t h e t h r e e c o n d i t i o n s are s a t i s f i e d a t each s t e p , then one may

b e s u r e t h a t t h e d e c o m p o s i t i o n p r o c e s s w i l l t e rmina te , and t ha t t he o r ig -

i n a l l a r g e p r o b l e m h a s a s o l u t i o n when t h e f i n a l r e s i d u a l p r o b l e m s are

so lved .

T h e s e c o n d i t i o n s f o r t h e i t e r a b i l i t y o f a decomposition are w e l l -

known, but are s t a t e d h e r e i n t h i s p a r t i c u l a r way b e c a u s e o f t h e i r d i r e c t

r e l e v a n c e t o t h e c r e a t i o n o f complex sof tware sys tems--a re levance tha t

has r e s i s t ed fo rma l t r ea tmen t du r ing t he p a s t two decades of development

of computer programming. These t h r e e c o n d i t i o n s , when p r o p e r l y r e s t a t e d

in fo rma l t e rms , are s u f f i c i e n t t o i n s u r e t h a t l a r g e a n d v e r y i n t r i c a t e

programs may be created by repeated decomposi t ions, as f i n e l y as des i r ed ,

so as to ach ieve t he advan tages l i s t ed above .

The concepts tha t are c e n t r a l t o a n u n d e r s t a n d i n g of t h i s t y p e o f

program decomposition w i l l be introduced by extension f rom two f a m i l i a r

engineer ing design problems. These examples u t i l i z e d e c o m p o s i t i o n s so

n a t u r a l and f a m i l i a r t h a t t h e i t e r a b i l i t y c o n d i t i o n s are n o t u s u a l l y d e a l t

w i t h e x p l i c i t l y .

The f i r s t p o i n t t o b e made i s t h a t t h e r e s u l t s o f a decomposition

may b e a b s t r a c t r a t h e r t h a n c o n c r e t e .

164

Consider the design of a large unit of engineering hardware such as
an automobile or a spacecraft. For an automobile a traditional approach

is effective: the overall problem is decomposed into portions correspond-

ing to the various physical parts of the vehicle--engine, steering, brakes,

body, electrical system, and so on. Each of these portions can be simi-

larly decomposed, and so on. Specifications are written for each portion

to permit the various portions to be designed independently, with the

assurance that they will all fit together in the final assembly.

For spacecraft, however, it has proven more effective to make the

initial decomposition on the basis of function--e.g., attitude control,

propulsion, scientific experiments, communications, etc., as suggested by
Figure VIII-1. Each such function may but need not correspond to a par-

ticular unit of hardware. Finer decompositions are made in terms of func-

tion and/or hardware. A given unit of hardware may be used to provide

several functions or subfunctions. The first two iterability conditions

are satisfied at each step by (1) describing each function or unit by a

specification that prescribes its behavior completely, without getting

involved in how this behavior is implemented; and (2) showing how the

overall design specifications will be met if only the various functions

or units meet their own specifications.

In addition, if each step involves a simplification of function

[Condition (3) 1 , the entire iteration will converge into an effective

design. For example, the communication function might be broken down

into data acquisition, data reduction and data storage, followed by a

transmitter and an antenna system. Data acquisition could be further de-
composed into sub-functions such as scanning, multiplexing, A+D conver-

sion, etc.; and so on. A s noted, some subfunctions will be executable on
common subunits of hardware, such as an onboard computer provided to im-

plement not only data acquisition and reduction, but data storage, por-

tions of attitude control and the scientific experiments as well.

This example should illustrate clearly that design decompositions,

including f u l l specifications, need not be made in terms of hardware, but

that abstract nonphysical concepts such as "function" can be used as well.

165

FIGURE VIII-1 DECOMPOSITION IN TERMS OF FUNCTION

A second illustration is provided by the set of subroutines that are
commonly employed in the writing of a program. Assuming that no recursion

is allowed, the "calling" operation can effectively organize these sub-

routines into a hierarchy with the main program (or programs) at the top

(Figure VIII-2). This hierarchy represents an iterated decomposition of

the original program (problem) into a succession of successively smaller

programs. One may even suppose that the simplest subroutines are them-
selves decomposed into sequences and instructions taken from a common

programming language at the lowest level. The syntax of conventional

programing normally forces the three iterability conditions to be sat-
isfied automatically.

FIGURE VIII-2 ILLUSTRATION OF A FUNCTIONAL HIERARCHY

167

This s econd example i l l u s t r a t e s how a programming h ierarchy can be

s e t up. It i s d e s i r a b l e t h a t t h i s h i e r a r c h y p o s s e s s c e r t a i n f e a t u r e s , t h e

most important of which i s the independence of the da ta handled by a sub-

rou t ine f rom d i r ec t man ipu la t ion by t h o s e h i g h e r - l e v e l s u b r o u t i n e s t h a t

may c a l l t h e s u b r o u t i n e i n q u e s t i o n . It would be p refer red i f the da ta

s t r u c t u r e s u s e d by any one subrout ine (or p rocedure) could be in t imate ly

a s s o c i a t e d w i t h t h e o p e r a t i o n s o f t h a t s u b r o u t i n e , so t h a t a l l accesses

and changes t o t h e d a t a m u s t pass th rough t he sub rou t ine i t s e l f . Whi l e

these k inds o f cons t r a in t s may b e i n c o r p o r a t e d i n t o a convent ional pro-

gram i n any spec i f i c i n s t ance , wha t i s r e a l l y needed i s a methodology that

au tomat i ca l ly con t ro l s t he a l lowed r anges o f ope ra t ions on s to red d a t a

and p rograming states when c rea t ing p rog rams i n gene ra l .

This requirement may b e s a t i s f i e d i n h e r e n t l y by p l ac ing t he data

s t r u c t u r e s t o be manipulated by t h e p r o g r a m i n t h e same decomposition

h i e r a r c h y as i s used fo r t he sub rou t ines t hemse lves . I f t h i s i s done

p r o p e r l y , t h e s p e c i f i c a t i o n s f o r a p a r t i c u l a r f u n c t i o n i n t h e h i e r a r c h y

can be wr i t t en t o p rov ide s t r ic t cont ro l over the cor responding e lements

of data. As a resul t , each subrout ine w i l l be s e l f - c o n t a i n e d a n d f u l l y

s p e c i f i a b l e w i t h respect t o b o t h t h e o p e r a t i o n s i t performs and t h e co r -

responding data s t ructures . Note here tha t , j u s t as the fundamenta l in -

s t r u c t i o n s f o r t h e h a r d w a r e c o r r e s p o n d t o t h e l o w e s t l e v e l s i n t h e h i e r -

archy, so a l s o are the fundamental elements of data loca ted a t t h i s l e v e l .

As one moves upward th rough t he h i e ra rchy , da t a s t ruc tu res composed from

these da t a e l emen t s may become la rger and more i n t r i c a t e , j u s t as the

functions performed upon them become more complex and powerful.

A type of program hierarchy w i l l now b e d e s c r i b e d t h a t s a t i s f i e s

t h i s a d d i t i o n a l d a t a - s t r u c t u r i n g r e q u i r e m e n t i n a n e f f e c t i v e and p r a c t i c a l

way.

The fundamental element i n t h e new h ie ra rchy w i l l be designated a

module, a term d u e t o P a r n a s (who is a l s o r e s p o n s i b l e f o r o t h e r i d e a s i n

s t ructured programming) . A t yp ica l p rog ram h i e ra rchy has t he same form

as t h a t i l l u s t r a t e d i n F i g u r e VIII-2. Each module, dep ic t ed by a circle

168

In the figure, is related to certain other modules below it by a depen-
dency relation, which is indicated by an arrow and will be defined sub-

sequently. The uppermost module(s) represents the user program(s), and

the lowermost modules represent the minimal level of implementation--e.g.,

computer instructions or hardware.

...

In essence, a module consists of a collection of data structures and

a collection of operations on these data structures. For example, a mod-

ule called MATRIX might maintain n X n matrices of real numbers and func-
tions for inversion, transposition, element change, access, etc. A mod-
ule called STACK might be used to push and = characters on the top of
a "stack" of stored characters.

By virtue of its data structures, a module may be said to possess a

storage state which will change from time to time as operations are per-

formed in the module. To specify a module completely, it is first con-

venient to define its data structures by declarations of variables, pa-

rameters, etc., in a conventional way, plus a set of value-functions

called V-functions. These V-functions collectively and completely de-

scribe the storage state of the module, though without presuming any par-

ticular configuration of the data elements in a physical or other form.

For example, it is of no concern at this point whether the characters in
a STACK module are stored in the form of a bidirectional shift register,

an array with a pointer, or as a linked list; the only property of inter-

est is that the characters entered by push be returned by pop in inverse
order of entry. In this case, the set of V-functions describes the set
of all past characters pushed in that have not yet been popped.

For the second part of a module specification, the operations per-

formable in the module are described by a set of operation-functions or

0-functions. These 0-functions are expressed in terms of the effects
they have on the set of V-functions of the module. That is, each

0-function describes in V-function terms how a prior storage state is

transformed into a new storage state. Again, no presumptions are made

here as to how an 0-function is to be realized or implemented in terms
of simpler constructs.

169

To c o m p l e t e t h e s p e c i f i c a t i o n o f a module, i n i t i a l v a l u e s m u s t b e

s p e c i f i e d f o r a l l V-funct ions. Also, e x c e p t i o n c o n d i t i o n s may b e i n d i -

c a t e d f o r b o t h 0- and V-funct ions- -e .g . , an input var iab le i s ou t o f

r a n g e , a l l o c a t e d s t o r a g e s p a c e i s f u l l , o r a d i sa l lowed ope ra t ion is re-

ques ted . Engl i sh- language explana tory comments may a l s o b e i n c l u d e d i f

des i r ed , bu t t he spec i f i ca t ion mus t be comple t e w i thou t t hese , o f cou r se .

F ina l ly , t he modu le i s g iven a name.

T h e t o t a l s p e c i f i c a t i o n now s a t i s f i e s t h e f i r s t i t e r a b i l i t y c o n -

d i t i o n , namely, t h a t t h e module i s comple te ly def ined as f a r as i t s k-
h a v i o r i s concerned.

To s a t i s f y t h e s e c o n d i t e r a b i l i t y c o n d i t i o n , e a c h m o d u l e i s i m p l e -

mented by a set of lower- leve l modules in the h ie rarchy . The modules on

which a given module depends for i t s implementat ion are s a i d t o b e i n a

dependency r e l a t i o n t o it, and are c o n n e c t e d t o i t i n F i g u r e V I I I - 2 by an

in t e rmodu le a r row po in t ing downward from it . Consider a t y p i c a l module

M and a l l those other modules on which it depends--i ts dependency set--
as i l l u s t r a t e d i n F i g u r e V I I I - 3 . L e t us suppose tha t an implementa t ion

o f M has a l ready been accompl ished , so t h a t M and a l l of the modules

i n i t s dependency set have been spec i f ied as described above. Thus, each

has i ts own set of 0- a n d V - f u n c t i o n s , i n i t i a l v a l u e s , etc., a p p r o p r i a t e

t o i t s purpose. To "implement" M it i s now n e c e s s a r y t o somehow relate

i t s own s p e c i f i c a t i o n t o t h e s p e c i f i c a t i o n s o f t h e m o d u l e s i n i t s depen-

dency set .

k

k k

k

To t h i s end, a correspondence between M and i t s dependency set i s k
r e c o g n i z e d . F i r s t , t h e states of M and t h o s e o f i t s dependency set are k
pu t i n to co r re spondence . Th i s is done by mapping the nonhidden

V-funct ions i n the dependency set o n t o t h e set of V-funct ions of . For

example, t h e states r e p r e s e n t i n g t h e c o n t e n t s o f matrices i n a MATRIX

module would be expressed i n terms o f t h e states r e p r e s e n t i n g v e c t o r s i n

a lower VECTOR module on which it depends. A state mapping is a c t u a l l y

a mapp ing o f da t a s t ruc tu res . It can be expressed by a set of a s s e r t i o n s

or equat ions , or i n s i m p l e cases merely as a t a b u l a r l i s t i n g .

Mk

170

DEPENDENCY
SET OF Mk

FIGURE VIII-3 DEPENDENCY SET

I n g e n e r a l , c e r t a i n p o r t i o n s o f t h e t o t a l s ta te i n t h e dependency

set may b e t r a n s p a r e n t t o M i n which case the mapping w i l l be many-to-

one ra ther than one-to-one. The corresponding V-funct ions are s a i d t o

be hidden (HV), e .g . , a l l s t o r e d c h a r a c t e r s e x c e p t t h e most recent ly en-

tered one i n a STACK module would normally be transparent t o a c a l l i n g

module above, and would be represented by such a function. HV-functions

i n t h e dependency set do not par t ic ipate i n t h e mapping onto M b u t t h e

HV-functions i n M must a l l be accounted for by the set of V-functions

i n t h e dependency set.

k’

c

k’

k

Second, every 0-function and V-function of module M m u s t be imple - k
mented as a program (tha t i s a s e q u e n c e o f c a l l s) i n terms o f t h e 0-

and V-functions of the modules of i t s dependency set. Note t h a t t h e s e

programs for funct ion implementat ion are a b s t r a c t programs, i n t h e s e n s e

t h a t t h e modules on which they might be run are themse lves abs t r ac t

machines.

171

This particular definition of a program hierarchy of modules natur-

ally assumes that there is no recursion in the dependency order. However,

it is permitted for two or more modules to depend upon the same lower-

level module. Consequently, the graph that describes the hierarchy is a

directed graph without cycles.

The set of nonhidden V-functions of a module may also contain de-
rived or DV-functions. These are redundant and are created for conve-

nience only. DV-functions need not participate in the assertions that

describe mapping correspondences, but must be defined directly or indi-

rectly as programs, just as for the other accessible V-functions.

As a convenience one may also speak of an OV-function as an insep-

arable concatenation of an 0-function and a V-function. It need not par-
ticipate i n the mapping, but like 0-functions requires a statement of

effects in its specification.

The second condition of iterability, the completeness of decompo-

sition, is therefore satisfied provided each 0- and V-function of every

module can be realized as a program of 0- and V-function taken from

lower-level modules of the hierarchy, where the data structures of the

corresponding modules are related by a complete V-function mapping as

defined above.

The third iterability condition is satisfied in the course of design,

provided each module is implemented with other modules that are less com-

plicated than itself. This condition is not automatically satisfied by

the design methodology. However, the methodology so structures the de-
sign that it is easier for the designer to maintain control over the com-

plexity of the implementations at each level, compared to a conventional

des ign.

These concepts and definitions will now be illustrated by means of

the simple example illustrated in Figure VIII-4. An upper module STACK

is to be

STACK is

stack--a

on which

implemented by means of a lower module ARRAY. The function of

to carry out the usual push and pop operations on a conventional

data structure consisting of a finite ordered list of elements

elements may be inserted (pushed) or removed (popped) only at

172

MODULE STACK

V-FUNCTION 0-FUNCTION
..

SIZE PUSH (X)
STAK(J) [HVI POP [OVI
TOP [DVI

MODULE ARRAY

V-FUNCTION 0-FUNCTION

CHAR(A) CHANGE(A,Y),

FIGURE VIII-4 EXAMPLE OF CONCEPTS AND DEFINITIONS

t h e t o p of t h e l i s t . T h e d a t a s t r u c t u r e i n ARRAY i s an unordered set of

e lements .

A c o m p l e t e s p e c i f i c a t i o n o f t h e m o d u l e ARRAY i s l i s t e d i n T a b l e

V I I I - 1 . F i r s t , v a r i a b l e s are dec la red as t o t h e i r t y p e s - - t h a t is ,

whether they are i n t e g e r , real, complex, boolean, e tc . , and parameters

of t h e a r r a y are de f ined . Next, t h e s i n g l e V - f u n c t i o n CHAR(A) i s spec-

i f i e d . After s t a t i n g i ts purpose , an excep t ion cond i t ion i s g iven t o

cover t h e case when the i ndependen t va r i ab le A i s o u t of range. Then,

t h e i n i t i a l v a l u e o f t h e V - f u n c t i o n i s i n d i c a t e d f o r a l l p o s s i b l e v a l u e s

of A . Next, t h e 0 - f u n c t i o n CHANGE(A,Y) is s p e c i f i e d , i n c l u d i n g i t s pur-

pose , excep t ions cond i t ions (e i the r A o r Y o u t of range), and i t s effect

upon the V-funct ion of t h e module . This module could be d i rec t ly real-

i z e d i n a random access memory, i n which case t h e V- and 0-funct ions

would correspond t o nondes t ruc t ive r ead and s imple wr i t e ope ra t ions , re-

s p e c t i v e l y . Note t h a t t h e r e i s n o t h i n g a b o u t t h e s p e c i f i c a t i o n o f ARMY

t h a t p r e s u p p o s e s t h i s p a r t i c u l a r h a r d w a r e r e a l i z a t i o n , h o w e v e r .

173

Table VIII-1

MODULE ARRAY

Declaration: Integer A, Y
Parameters: AMAX Size of Array

CHMAX . Maximum value of stored element

V -Func t ion : CHAR (A)
Purpose: To return the A-th element of the

Exceptions: AOUT: A < 1 or A > AMAX
Initially: B (0 5 i S AMAX) (CHAR(i) = 0)

array

0-Function: CHANGE (A, Y)
Purpose: To replace the A-th element of the

Exceptions: AOUT: A 1 or A > AMAX

Effects: CHAR(A) = Y

array by Y

YOUT: X e 0 or Y > CHMAX

The specification of the module STACK shown in Table VIII-2 follows

similar lines. The V-function SIZE reflects the number of entries that

are currently stored in the stack. A HV-function STAK(J) represents

the entire contents of the stack; it is invisible and cannot be called by

higher-level modules. A DV-function TOP is derived from STAK(J). The

effects of the 0-function PUSH(X) are to inject a new element X onto the

top of the stack and to increase SIZE by 1. The OV-function POP accom-

plishes the reverse--the top element is both returned and deleted from

the stack, and SIZE is reduced by 1. Again, the STACK module could be

implemented in a variety of ways and none are assumed or precluded by

the specification given here.

Implementation of STACK by means of ARRAY requires first that the

V-functions of the two modules be placed in correspondence. To this end,
the parameters are related first. The nonderived V-functions of STACK

are expressed in terms of (nonhidden) V-functions of ARRAY. Note that the

elements of STAK and CHAR are placed in one-to-one correspondence, except

that one extra element of CHAR is reserved for SIZE, which is to be used

as a pointer in this implementation.

174

Table VIII-2

SPECIFICATION OF MODULE STACK

Module Stack
Declarations: Integer J. X
Parameters:

V-Function:

HV-Func tion:

DV-Func t ion :

0-Function:

OV-Func tion:

Mapp in&
Parameters:

V-Functions:

Initialization
CHAKE (rLsAX, 0)

Implementation
V-Func t ion :
DV-Func t ion :

0-Tunc t ion :

OV-Function:

SMAX Maximum s i z e of stack
CHARMAX Maximum value of stored element
SIZE
Purpose: To return the number of elements currently in

Exception: None
Initially: SIZE = 0

STAK(J)
Purpose: To represent entire contents of the stack
Initially: Vi(0 i s SMAX)(STAK(i) = Undefined)
TOP
Purpose: To return top element in the stack
Derived: TOP = STAK(S1ZE)
Exceptions: EMPTY: SIZE = 0

PUSH (X)
Purpose: To augment stack with an additional Element X
Exceptions: FULL: SIZE = MAXS

Effects: SIZE = 'SIZE' + 1

the stack

XOUT: X C 0 or X > CHARMAX

STAK(S1ZE) = X
Pot-
Purpose: To return and remove top element of the stack
Exception: EMPTY: 'SIZE' = 0
Effects: POP = STACK('S1ZE')

SIZE 'SIZE' - 1

CHMAX = CHARMAX
CHMAX = SMAX
A M A X = S M A x + l

VJ(1 5 J 5 AMAX - l)(STAK(J) = CHAR(J))
SIZE = CHAR(AMAX)

SIZE = CHAR(AMAX)
TOP = CHAR(CHAR(AMAX))
EXIT: EMPTS: CHAR(AMAX) = 0
ASSERTIOK: FL'LL: CHAR(ANAX) AMAX - 1

SOI'T: X < 0 or X > CHEW
PCSH(X): CHAiiGE (AMAX, CHAR(ANAX) + 1)

CHAKGE (CHAR("), X)
ASSERTIOK: EXPTY: CHAR(ANAX) - 0
Pop: m e = CHAR(CHAR(AMAX))

CHANGE (AMAX, CHAR(AMAX) - L)

175

Next, ARRAY must be initialized to conform to the initial conditions

of STACK. Only the extra element CHAR need be set to a defined value.

Finally, the implementation is described by expressing each function

of STACK as a program in terms of the V-function CHAR and the 0-function

CHANGE of the module ARRAY. Exit conditions expressed in the same terms

describe non-normal returns from the lower level to the upper level.

Several properties of this realization may be noted at this point

as a way of summarizing some important general features of a hierarchi-

cal design :

(1) Each module specification is essentially independent
of those of all other modules.

(2) The effects of 0-functions and the definitions of
DV-functions are expressed in terms of nonderived
V-functions of the same module, and are implemented
solely in terms of functions occurring in that mod-
ule's dependency set.

(3) The implementation employed for a module is not
visible to those upper modules that may depend upon
that module for their own implementations.

(4) The state of a module is determined by the complete
set of values of all of its nonderived V-functions,
over all allowed values of their arguments.

(5) The mapping of V-functions between modules presumes
explicit relationships between the parameters of
corresponding modules.

(6) HV-functions have no exception conditions; 0- and OV-
functions have no initial conditions; and none of the
V-functions have effects.

With this background, the steps of design according to the methodol-

ogy may be outlined as follows. The starting point f o r the design con-

sists of a specification of the uppermost module in the hierarchy--a con-

cise description of what the overall program is to accomplish. If the

hardware on which the final program is to be implemented is prescribed,

a list of the lowest-level elements or functions out of which the system

is to be composed will also be specified. Then:

(1) The uppermost module function is decomposed into a hier-
archy of modules, the function of each of which is cur-
sorily described in words.

176

(2) The func t ion of each module is de f ined p rec i se ly by a
s p e c i f i c a t i o n , as expla ined prev ious ly .

(3) The V-function mappings are worked out between each
module and those of i t s dependency set.

(4) A l l V-funct ions and 0-funct ions are implemented as
programs i n t h e V- and 0-functions of modules of
the i r cor responding dependency sets.

Like mos t des igns , these four steps are not independent of one another .

They are n o t e x e c u t e d i n a s i n g l e s e q u e n c e b u t are passed through re-

p e a t e d l y i n t r i a l - a n d - e r r o r f a s h i o n u n t i l a l l cond i t ions are s a t i s f i e d

and a l l c o s t and qua l i ty measu res (such as t h e number of programming

s t e p s , t h e r u n n i n g time, and amount o f s t o r a g e r e q u i r e d) are s u i t a b l y

opt imized.

S t e p s 2 and 3 above are l a rge ly fo rma l , bu t steps 1 and 4 are more

c r e a t i v e . T h e f i r s t s t e p r e q u i r e s a p e r s p e c t i v e v i e w o f t h e e n t i r e h i e r -

a r c h i c a l program. I n decomposing the var ious module funct ions, the de-

s i g n e r m u s t u s e h i s p a s t e x p e r i e n c e t o a n t i c i p a t e how they shou ld bes t

be decomposed, both i n terms of t he ope ra t ions pe r fo rmed and t he da t a

s t r u c t u r e s a p p r o p r i a t e t o t h e s e m o d u l e s . The f o u r t h s t e p c a n o f t e n bene-

f i t f rom ingenui ty a t a more d e t a i l e d , l o g i c a l l e v e l .

Two i d e a l i s t i c a p p r o a c h e s t o h i e r a r c h i c a l d e s i g n are fa sh ionab le .

I n t h e bottom-up approach the modules are d e f i n e d i n s u c c e s s i o n f r o m t h e

b o t t o m o f t h e h i e r a r c h y t o t h e t o p , i n s u c h a manner t h a t no module i s

c r e a t e d u n t i l a l l modules i n i t s dependency set h a v e b e e n c r e a t e d f i r s t .

The user program a t t h e t o p is c r e a t e d last. I n t h e top-down approach

one starts with the uppermost module and creates lower-level modules i n

success ion as they are needed, u n t i l a l l of the lowes t - leve l modules are

defined. The bottom-up approach i s more of a s y n t h e s i s , i n t h e s e n s e t h a t

t h e s i m p l e s t e l emen t s o f t he sys t em are gradual ly assembled into more and

m o r e p o w e r f u l u n i t s i n o r d e r t o r e a l i z e t h e f u n c t i o n a t t h e t o p . I n o n e

way it i s a more o rde r ly p rog res s ion . The top-down viewpoint i s more

a n a l y t i c a l , i n t h e s e n s e t h a t f u n c t i o n s , d a t a s t r u c t u r e s and ope ra t ions

are repea ted ly b roken down i n t o s i m p l e r parts u n t i l o n l y pr imi t ive ver-

s i o n s remain.

177

Both of these approaches suf fe r f rom the same disadvantage . Namely,

it i s n o r m a l l y d i f f i c u l t t o d e f i n e m o d u l e s a t i n t e r m e d i a t e l e v e l s m e r e l y

from a knowledge of module specif icat ions a t the uppermost and lowermost

levels o f t h e h i e r a r c h y . While t h e d e c o m p o s i t i o n o f t h e s y s t e m i n t o a

f u n c t i o n a l h i e r a r c h y g r e a t l y s i m p l i f i e s t h e o v e r a l l d e s i g n problem, t h e

s t e p o f s e l ec t ing i n t e rmed ia t e - l eve l modu les s t i l l r e q u i r e s a broad view

of t h e m a n i f o l d p o s s i b i l i t i e s o f a n a l y s i s and synthes is . These are pres-

en t ly bes t acqu i r ed on ly t h rough expe r i ence .

Consequently, the bottom-up and top-down approaches actually mark

extremes a t the ends o f a cont inuum of poss ib i l i t i es . The practical ap-

proach l ies i n between. The t o t a l number o f compe t ing des ign a l t e rna t ives

are reduced by working a t a l l l e v e l s o f t h e h i e r a r c h y s i m u l t a n e o u s l y ,

u s ing t he t op and bo t tom l eve l s on ly as s t a r t i n g p o i n t s .

I f a computer program has been designed hierarchical ly as de f ined

above , formal p rogram proving techniques can be appl ied appropr ia te ly to

t h e module spec i f ica t ions , to the V-funct ion mapping cor respondences , and

t o t h e 0- and V-function implementations, t o p r o v e c o r r e c t n e s s o f t h e

program. These techniques are now u n d e r g o i n g r e f i n e m e n t i n r e l a t e d SRI

p r o j e c t s i n w h i c h t h e h i e r a r c h i c a l d e s i g n m e t h o d o l o g y i s b e i n g a p p l i e d t o

o the r so f tware sys t ems .

T h i s h i e r a r c h i c a l a p p r o a c h a l s o creates a d e s i g n i n which i t i s

easier t o c o n t r o l s e c u r i t y - - m a i n t a i n i n g c o n t r o l o v e r d i f f e r e n t u s e r s ’

r i g h t s t o access and/or change var ious data e lements-- including a capa-

b i l i t y f o r p r o v i n g t h a t t h e d e s i r e d s e c u r i t y is indeed ach ieved . F ina l ly ,

a p rogram r e su l t i ng f rom the new methodology i s amenable t o d e t e r m i n a t i o n

of i t s r e l i a b i l i t y , u n d e r a n assumed set of f a i l u r e p r o b a b i l i t i e s f o r i t s

lowes t - l eve l modu le func t ions , and t o p rov ing t ha t a r e q u i r e d r e l i a b i l i t y

l e v e l h a s a c t u a l l y b e e n a c h i e v e d i n t h e d e s i g n .

178

I X HIERARCHICAL ORGANIZATION OF SIFT

I n t h i s s e c t i o n we d i s c u s s t h e d e s i g n o f t h e S I F T s y s t e m as a h i e r -

a r c h i c a l l a y e r i n g o f a b s t r a c t m a c h i n e s . F i r s t , we b r i e f l y d i s c u s s t h e

h i e ra rch ica l des ign me thodo logy , w i th respect t o o u r c o n c e p t o f t h e SIFT

requ i r emen t s and t he hand l ing o f f au l t s and errors . This methodology com-

p r i s e s f i v e s t a g e s o f d e s i g n a n d i m p l e m e n t a t i o n . T h e r e a l i z a t i o n o f SIFT

is d i s c u s s e d r e l a t i v e t o t h e s e f i v e stages. T h e p r o p o s a l f o r t h i s p r o j -

ect s u g g e s t e d t h a t t h e o p e r a t i n g s y s t e m b e d e s c r i b e d u s i n g f l o w c h a r t s .

Th i s sugges t ion has no t been fo l lowed because t he f i ve s t ages p rov ide a

descr ip t ion which is easier t o u n d e r s t a n d and a l s o i s easier t o v e r i f y

and analyze.

A . The Hierarchical Methodology Relative t o SIFT

I n S e c t i o n V I 1 t he h i e ra rch ica l me thodo logy w a s d i scussed as a gen-

eral approach t o d e s i g n i n g and proving systems. Below, we b r i e f l y r e v i e w

the methodology and present some augmen ta t ions t o hand le ha rdware f au l t s ,

t h e i r i m p a c t on a l l abs t r ac t mach ines and an approach toward developing

a c r e d i b l e r e l i a b i l i t y a s s e s s m e n t o f S I F T . The methodology involves the

fo l lowing s t ages .

S t age O--Express the problem to be so lved in abs t rac t and perhaps

imprec ise terms. For SIFT th i s s t a g e en ta i l s expres s ing the in ten t of

t h e S IFT sys t em wi th r ega rd t o d i spa tch ing app l i ca t ion t a sks and t he

h a n d l i n g o f e r r o r s .

Stage 1--Conceive of a set of abs t r ac t mach ines that seem appro-

p r i a t e fo r so lv ing t he p rob lem. Each abs t r ac t mach ine has a state space

and o p e r a t i o n s t o c h a n g e t h e state. As suggested by Parnas [Ref . 11,
we use V-funct ions t o r e p r e s e n t t h e state and O-functions t o correspond

to opera t ions . The machines are o rgan ized h i e ra rch ica l ly , i.e., as nodes

i n a d i r e c t e d a c y c l i c g r a p h . An edge from node A t o node B i n d i c a t e s t h a t

the machine a t node B implements the machine a t node A . The machines

179

c o r r e s p o n d i n g t o l e a f n o d e s i n t h e g r a p h are c a l l e d primitive machines

s i n c e t h e o p e r a t i o n o f t h e e n t i r e s y s t e m i s dependent on these machines .

I n t h e d e s i g n p r o c e s s i t i s u s e f u l t o view each abs t r ac t mach ine as main-

t a i n i n g a p a r t i c u l a r t y p e o f a b s t r a c t o b j e c t f o r u s e by a n a b s t r a c t ma- .

c h i n e d i r e c t l y a b o v e it i n t h e h i e r a r c h y . Some o f t h e f u n c t i o n s o f e a c h

a b s t r a c t m a c h i n e c a n b e c a l l e d by programs t h a t r u n on the sys tem. We

d e s i g n a t e t h e s e f u n c t i o n s as compr i s ing t he sys t em in t e r f ace . Fo r SIFT

the p rograms tha t ca l l t h e i n t e r f a c e f u n c t i o n s are s i m p l y t h e a p p l i c a t i o n

t a s k s . It should be clear t h a t t h e m a c h i n e f u n c t i o n s t h a t are n o t p a r t

o f t h e i n t e r f a c e are n o t a c c e s s i b l e t o t h e a p p l i c a t i o n p r o g r a m s .

A l l o f t h e 0- and V-functions of a m a c h i n e a c c e s s i b l e t o a h ighe r

leve l machine are c a l l e d t h e v i s i b l e f u n c t i o n s o f a machine. Some o f t h e

V-funct ions j u s t s e r v e t o a i d i n d e f i n i n g t h e s ta te and cannot be accessed;

t h e s e f u n c t i o n s are ca l led h idden V-funct ions . The set of V-funct ions of

a machine tha t are e s s e n t i a l i n d e f i n i n g t h e s ta te space of a machine are

ca l l ed p r imi t ive V- func t ions . Some o the r V- func t ions , ca l l ed de r ived

V- func t ions , r e tu rn a v a l u e t h a t i s dependent on the value of more pr imi-

t i ve V- func t ions . The ro l e o f de r ived V- func t ions is t o provide a mech-

a n i s m f o r r e f e r r i n g t o a c o l l e c t i o n o f states by a s ing le func t ion . These

func t ions are d e s c r i b e d i n more d e t a i l i n S e c t i o n IX-D.

I n o r d e r t o fo rma l i ze t he concep t o f a f a u l t o c c u r r e n c e , we use t h e

mechanism of hidden 0-functions. That i s , some o f t he abs t r ac t mach ines

w i l l con ta in t he 0 - func t ion cause - fau l t , wh ich i s n o t c a l l e d by any pro-

gram, but occurs asynchronous ly wi th o ther p rocess ing , wi th a p r o b a b i l i t y

dependent upon the hardware and t ransient faul t mechanisms. The object

t h a t i s "damaged" by t h e f a u l t i s d e p e n d e n t o n t h e p a r t i c u l a r a b s t r a c t

machine tha t i s s u b j e c t t o f a i l u r e . I n o u r a n a l y s i s o f SIFT t h e p r i m i t i v e

o b j e c t s t h a t are s u b j e c t t o f a i l u r e are processors and busses . This

r e p r e s e n t s a c o a r s e t r e a t m e n t o f f a u l t s as compared with one i n which

f a u l t s are assumed t o a f f e c t memory words o r p r o c e s s o r r e g i s t e r s . Our

course approach is realist ic f o r a n LSI implementation and moreover,

does not produce overly pessimistic resu l t s . Hidden V-funct ions are in -

c l u d e d i n c e r t a i n m a c h i n e s t o r e c o r d . t h e o c c u r r e n c e o f f a u l t s . T h e s e

180

f u n c t i o n s are o f necess i ty h idden s ince an obse rve r o f t he mach ine ' s be -

hav io r w i l l n o t d e t e c t t h e f a u l t o c c u r r e n c e u n t i l t h e m a c h i n e i s appro-

p r i a t e l y e x e r c i s e d .

S t age 2 - - In t h i s s t age a f o r m a l s p e c i f i c a t i o n i s w r i t t e n f o r e a c h

o f t he abs t r ac t mach ines . The e x a c t f o r m a t o f t h e s p e c i f i c a t i o n s i s d i s -

c u s s e d i n t h e n e x t s e c t i o n , b u t i t s u f f i c e s f o r t h i s d i s c u s s i o n t o s a y

t h a t t h e m o s t s i g n i f i c a n t p a r t of a s p e c i f i c a t i o n i s t h e e f f e c t s s e c t i o n

for each 0- func t ion which g ives the new V- func t ions i n terms of t h e v a l -

ues o f V-funct ions immedia te ly p r ior to a c a l l on the 0-funct ion. These

e f f e c t s are w r i t t e n as a s s e r t i o n s i n a language to be descr ibed below.

I n t h e case of machines whose specif icat ion is i n t e n d e d t o p o r t r a y t h e

r e s u l t s o f f a u l t s , t h e e f f e c t o f t h e g e n e r i c 0 - f u n c t i o n c a u s e - f a u l t i s t o

change t he va lues o f h idden V- func t ions t ha t r eco rd t he f au l t occu r rence .

The f au l t c an p roduce a p e r c e i v a b l e e r r o r when an 0- func t ion i s invoked

whose s p e c i f i c a t i o n s are dependent on the above hidden V-functions.

S t age 3 - - In t h i s s t age t he s ta tes o f each non-p r imi t ive abs t r ac t

machine a re represented in t e rms of the s ta tes of the lower level machines

tha t compr i se its implementa t ion . This representa t ion i s a par t ia l map-

ping f rom the state-spaces of the lower level machines onto the upper

l e v e l state-space. I t is pa r t i a l s ince no t every lower l eve l s ta te w i l l

have an image i n t h e uppe r l e v e l , and it is on to s ince each u p p e r l e v e l

s ta te m u s t be t h e t a r g e t o f a mapping. Two d i s t i n c t states S1, S2 i n t h e

u p p e r level machine m u s t have d i s t inc t images in the lower l eve l machine ,

o t h e r w i s e i n t h e i m p l e m e n t a t i o n t h e states w i l l no t be d i s t i ngu i shab le .

On the o ther hand , an uppe r l e v e l state S1 can be represented by more

than state T1, T2, ... i n t he l ower l eve l mach ine . The meaning of t h i s

m u l t i p l e r e p r e s e n t a t i o n i s t h a t a t any i n s t an t on ly one o f t he states T i

a c t u a l l y r e p r e s e n t s sl, but which s ta te i s se lec ted depends on the i m p l e -

m e n t a t i o n (s t a g e 4) and p o s s i b l y e x t e r n a l i n p u t s , e . g . f a u l t s . I f t h e

l o w e r l e v e l c o n s i s t s of more than one abs t rac t machine it i s convenient

t o view the aggregate of such lower level machines as a s ing le mach ine

wi th a state space t h a t is t h e C a r t e s i a n p r o d u c t of t h e component s ta te

spaces.

181

It is a l s o c o n v e n i e n t t o c a r r y o u t t h e s ta te mapping i n two steps.

I n t h e f i r s t s t e p a l l of t h e states in t he l ower l eve l mach ine t ha t have

images i n t h e u p p e r level are d e f i n e d . I n t h e s e c o n d s t e p the upper

l e v e l t a r g e t states are s e l e c t e d f o r e a c h s ta te d e f i n e d i n s t e p 1.

As d i s c u s s e d f o r s t a g e 2 above , ce r t a in states of a module record

the occur rence o f a f a u l t . I n some cases an occurrence of a f a u l t of one

machine a lso results i n a f a u l t a t a h igher l eve l machine . In such cases

t h e f a u l t states, similar t o o t h e r states are mapped upward. However,

i n o t h e r cases the occur rence o f a f a u l t i s masked by t h e u p p e r l e v e l

machine. Thus, a f a u l t - f r e e a n d i t s c o u n t e r p a r t f a u l t y s ta te both map up

t o t h e same state i n t h e u p p e r level machine.

S i n c e t h e states of an abstract machine are def ined by values of

p r i m i t i v e V - f u n c t i o n s , t h e i n t e r m o d u l e r e p r e s e n t a t i o n s are w r i t t e n as

expres s ion r e l a t ing t he l ower l eve l p r imi t ive V- func t ions and t he uppe r -

leve l V-funct ions . The process o f def in ing the lower l eve l states t h a t

map upward i n v o l v e s w r i t i n g a n e x p r e s s i o n i n terms o f t h e p r i m i t i v e V-
func t ions o f the lower l eve l machine .

S t age 4 - - In t h i s s t age , t he nonpr imi t ive abs t r ac t mach ines are

implemented i n terms of the machines d i rec t ly be low them in t h e h i e r a r c h y .

S i n c e t h e v i s i b l e 0- and V-functions of a machine are c a l l a b l e , i t i s

t h e s e f u n c t i o n s t h a t are t o be implemented i n terms o f t h e v i s i b l e 0-

and V-functions of the lower level machines. At presen t , we write t h e s e

implementation programs i n a s i m p l e language which we c a l l a n a b s t r a c t

programming language. These programs can serve as a p l a n f o r t h e u l t i -

mate implementat ion programs wri t ten in assembly language or perhaps some

higher l eve l l anguage . We i n t e n d t o s t u d y t h e p o s s i b i l i t y o f u s i n g some

augmenta t ion of an ex is t ing h igh leve l l anguage as t h e a b s t r a c t program-

ming language. That is, t h e a b s t r a c t programs could be compi l ed d i r e c t l y

into assembly code.

As d i s c u s s e d above fo r s t age 1, t h e o c c u r r e n c e o f f a u l t s is handled

by t h e i n v o c a t i o n o f t h e 0 - f u n c t i o n c a u s e - f a u l t by a hidden asynchronous

p r o c e s s . I f a f a u l t i n a lower level machine i s t o b e a p p a r e n t i n t h e

182

machine direct ly above, then there must be a c a u s e - f a u l t 0 - f u n c t i o n i n

the upper l eve l machine . The upper l eve l cause- fau l t 0 - func t ion is t h e

"implemented" by a combina t ion of cause- fau l t 0 - func t ions o f the lower

level machine.

F i g u r e I X - 1 d e p i c t s t h e s ta te changes and s ta te r e p r e s e n t a t i o n map-

p ings for upper l eve l machine S which is implemented by machine T . I n S

t h e e f f e c t o f t h e 0 - f u n c t i o n when the machine i s i n state S1 i s t o c a u s e

a t r a n s f e r t o S2. The states T 1 and T2 of T map up t o S1 whi le T3 and T4

map up t o S2. I f T i s i n state T 1 then the implementa t ion of the 0-

f u n c t i o n i s a program which causes T to undergo numerous state t r a n s i t i o n s ,

b u t o n l y t h e i n i t i a l and f i n a l states (T 1 and T4) map up t o S . A f a u l t

i n T could cause a t r a n s i t i o n f r o m T1 t o T2, b u t t h i s f a u l t i s i n v i s i b l e

t o S s ince bo th T1 and i t s f a u l t y c o u n t e r p a r t b o t h map up t o S1.

UPPER LEVEL
STATESPACE

(MACHINE TI

UPPER ' ""'

S T A T E - w w x
(MACHINE S)

0-FUNCTION

/ I REPRESENTATION

""_
""""""

'FIGURE E - 1 DESCRIPTION OF STATE CHANGES, REPRESENTATION MAPPINGS, AND
IMPLEMENTATIONS IN ADJACENT ABSTRACT MACHINES

183

. - " -

B. S t a g e 0 of the Methodology for SIFT

I n t h i s s t a g e t h e i n t e n t o f SIFT i s d e s c r i b e d i n i m p r e c i s e terms i n

o r d e r t o a i d i n d e v e l o p i n g a h i e r a r c h i c a l o r g a n i z a t i o n . T h i s d e s c r i p t i o n

w i l l a l s o s e r v e i n f o r m u l a t i n g p r e c i s e a s s e r t i o n s a b o u t SIFT fo r pu rposes

of ver i fying the design. The pr imary purpose of SIFT i s t o d i s p a t c h ap-

p l i c a t i o n t a s k s when t h e i r s e r v i c e i s needed, even i f t h e h a r d w a r e u n i t s

f a i l . A s d i s c u s s e d i n S e c t i o n V, two t y p e s o f a p p l i c a t i o n t a s k s are

handled by t h e SIFT system: scheduled tasks which are g u a r a n t e e d t o b e

d i spa tched a t a f i x e d rate, and p r io r i ty t a sks , each o f wh ich i s d i s -

p a t c h e d i f i t s dead l ine has exp i r ed and i f i t s p r i o r i t y i s h ighes t o f a l l

s u c h t a s k s whose dead l ine has e x p i r e d .

The basic scheme for a l l a p p l i c a t i o n t a s k s , f o r e a c h i t e r a t i o n i s as

fo l lows:

READ DATA FROM EACH TASK SUPPLYING INPUTS

COMPUTE

WRITE DATA TO A BUFFER FOR EACH TASK THAT REQUIRES I T
AS AN INPUT

I f t h e n - t h i t e r a t i o n o f t a s k A r e q u i r e s d a t a f r o m t h e (n - 1) s t i t e r a t i o n

o f t a s k A, t hen A is i n c l u d e d i n b o t h t h e i n p u t t a s k set and t h e o u t p u t

t a s k set f o r A . A p a r t i c u l a r f e a t u r e o f t h e s e l e c t e d a v i o n i c s t a s k set

is t h a t a t a sk runn ing a t i t e r a t i o n rate f does not read data from a t a s k

running a t i t e r a t i o n ra te f l , f l > f . Thus a t a s k A need only write d a t a

f o r a less f r e q u e n t l y d i s p a t c h e d t a s k B, as o f t e n as B i s d i spa tched .

When B writes data f o r A, B d e p o s i t s t h e data i n a b u f f e r t h a t i s

shared wi th A . When A i s d ispa tched i t s read da ta ope ra t ion i nvo lves

r ead ing t he con ten t s o f t he bu f fe r . Fo r pu rposes o f r edundancy , t a sks

are executed on more than one p rocesso r . Thus t he r ead ope ra t ion fo r B

from A y i e l d s a r e su l t which i s t h e m a j o r i t y v a l u e o f t h e d a t a over a l l

in s t ances o f execu t ion o f A . I f no m a j o r i t y v a l u e exists t h e n s e v e r a l

policies can be invoked, one of which i s t o t e m p o r a r i l y s u s p e n d B ' s

e x e c u t i o n . S e v e r a l i s s u e s r e g a r d i n g t h e v o t e o p e r a t i o n are s i g n i f i c a n t

t o t h e d e s i g n of t h e SIFT opera t ing sys tem.

184

T h e a p p l i c a t i o n p r o g r a m e r f o r B should no t have to know
which processors are running A nor even how many such
p rocesso r s ex is t a t any ins tan t . The SIFT opera t ing sys-
t e m should main ta in such in format ion and appropr ia te ly
p r o c e s s t h e r e a d i n p u t d a t a command.

When B's read from A invo lves a vo te ove r more than one
i n s t a n c e o f A, it is e s s e n t i a l t h a t a l l such i n s t ances
p r o d u c e d a t a f o r t h e same i t e r a t i o n (e x c l u d i n g t h o s e
i n s t a n c e s o n f a u l t y p r o c e s s o r s) . As we observe below
t h i s is t h e o n l y s y n c h r o n i z a t i o n r e q u i r e m e n t o n t h e ex-
e c u t i o n o f i n s t a n c e s of t a s k s .

When a v a i l a b l e , d i f f e r e n t b u s s e s are used fo r t he r ead
over ins tances o f a t a s k , i n o r d e r t o p e r m i t t h e v o t e
mechanism t o mask s i n g l e b u s f a i l u r e s , i n a d d i t i o n t o
s i n g l e p r o c e s s o r f a i l u r e s .

The pr imary error detect ion mechanism i s v i a a d i sag ree -
ment on a v o t e . I f t h e r e d u n d a n c y i s s u f f i c i e n t r e l a t i v e
t o t h e number o f f a u l t y p r o c e s s o r s and busses, it i s pos-
s i b l e t o u n i q u e l y i d e n t i f y t h e f a u l t y u n i t s .

T h e u n i t s t h a t are i n d i v i d u a l l y s u b j e c t t o f a i l u r e are p rocesso r s

and busses. A t a f i n e r g r a i n i t will b e n e c e s s a r y t o c o n s i d e r f a i l u r e s

than i nvo lve a p r o c e s s o r ' s i n t e r a c t i o n w i t h a bus. (We have conducted

some ana lyses of t h i s la t ter f a i lu re t ype and have i nco rpora t ed mechanisms

i n t h e d e s i g n t o accommodate it, but the work is n o t y e t complete.) When

a f a i l e d b u s i s d e t e c t e d a n d i d e n t i f i e d , t h e n t h e r e c o n f i g u r a t i o n p r o c e s s

w i l l mod i fy t he sys t em t ab le s such t ha t t h i s bus i s avoided i n a l l f u t u r e

read i n p u t d a t a o p e r a t i o n s .

When a f a i l e d p r o c e s s o r i s d e t e c t e d a n d i d e n t i f i e d , t h e r e c o d f i g u r -

a t i o n p r o c e s s is t o r e a l l o c a t e t a s k s t o o p e r a t i v e p r o c e s s o r s s u c h t h a t

t h e o p e r a t i v e p r o c e s s o r s are used in an op t imal manner . One s i m p l e

po l i cy t ha t can be pu r sued he re is t o a l l o c a t e t h e t a s k s o f t h e f a i l e d

p r o c e s s o r t o a spare p r o c e s s o r , i f o n e exists, o r else accept reduced

redundancy for these t asks . The des ign does no t impose the use o f th i s

s i m p l e r e c o n f i g u r a t i o n p o l i c y , b u t i n s t e a d a l l o w s f o r t h e s t o r a g e o f t a s k

a l l o c a t i o n s t o p r o c e s s o r s as a f u n c t i o n of f a u l t y p r o c e s s o r s . T h i s t a b l e

could be computed pr ior to a f l i g h t o r when a p r o c e s s o r f a i l u r e is

d e t e c t e d .

185

..

F o r a n y p o l i c y o f a l l o c a t i n g t a s k s t o p r o c e s s o r s , a f t e r a processor

f a i l u r e , t h e f o l l u w h g steps must be carried ou t :

The program code f o r a t a s k a s s i g n e d t o a p rocesso r is
l o a d e d i n t o t h a t p r o c e s s o r . I n S I F T t h e l o a d i n g p r o -
cess invo lves t he r ead ing o f t he p rog ram code f rom
o t h e r i n s t a n c e s o f t h e program, by a special load ing
program i n t h e p r o c e s s o r .

The t a b l e s o f a l l p r o c e s s o r s e x e c u t i n g r e a l l o c a t e d t a s k s
m u s t be updated s o t h a t t h e r e a d i n p u t d a t a o p e r a t i o n s
are d i r e c t e d t o t h e a p p r o p r i a t e p r o c e s s o r . S i n c e a l l
d a t a r e q u i r e d by a t a s k is obta ined by read i n p u t data,
once the program code i s loaded and the t ab les are up-
d a t e d , t h e t a s k i s r e a d y t o b e d i s p a t c h e d .

Some t a s k s w i l l r e q u i r e service i n d e p e n d e n t o f t h e a c t i o n s o f t h e

r econf igu ra t ion p rocess . Thus it is e s s e n t i a l t h a t a t least one i n s t ance

of each c r i t i ca l t a sk be d i spa tched as needed du r ing t he r econf igu ra t ion

p r o c e s s . I n o r d e r t o a c h i e v e t h i s c o n t i n u i t y o f s e r v i c e , t h e r e c o n f i g u r -

a t ion po l i cy changes on ly one p rocesso r ' s t a sk a l loca t ion a t any t i m e . I n

a d d i t i o n , t h a t p r o c e s s o r ' s r e a l l o c a t i o n is comple ted before a t ten t ion i s

directed t o a n o t h e r p r o c e s s o r .

Th i s s ec t ion has p re sen ted an i n fo rma l , bu t comple t e , desc r ip t ion

o f t h e e x t e r n a l i n t e r f a c e of SIFT system, and SIFT'S mechanisms and

f e a s i b l e p o l i c i e s i n h a n d l i n g f a u l t s . T h e n e x t s e c t i o n p r e s e n t s a h i e r -

a rch ica l decomposi t ion o f SIFT.

C . S t age 1 A s Applied t o 'SIFT

The decomposition of the SIFT system as a h i e r a r c h y o f a b s t r a c t ma-

ch ines i s shown i n F i g u r e IX-2. Each of t h e s o l i d - l i n e b o x e s c o r r e s p o n d s

t o a n a b s t r a c t m a c h i n e t h a t m a i n t a i n s a b s t r a c t data o b j e c t s , i.e., con-

t a i n s 0 and V-funct ions. Each of the dashed-l ine boxes i s a n a b s t r a c t

program tha t does no t con ta in a s ta te ; the p rog rams j u s t con ta in code t o

ca l l the func t ions o f l ower l eve l abs t r ac t mach ines , and pe rhaps , con -

s t a n t s .

The state of the sys tem is m a i n t a i n e d e n t i r e l y by t h e a b s t r a c t ma-

c h i n e s . I n o r d e r t o s i m p l i f y t h e d e s c r i p t i o n we show on ly a s i n g l e i n -

s tance of each machine. However, i t is unders tood tha t each processor

186

APPLICATION TASKS EXECUTIVE TASKS

I"""

I
1 I N I

L"""l I"--,-J

1 r----- 7 r---- 1 r--- -1
I TASK t""J

TASK I I GLOBAL I

I READER'VoTER I
Clock-Tick

I DISPATCHER I FAULT 1 I SCHEDULES
FAULT I STATUS

CIRCULAR
LISTS

BUFFER

MEMORY BUS
ADDRESSING CONNECTION

1
I HARDWARE I
I I

~~

FIGURE IX-2 HIERARCHICAL STRUCTURE OF SIFT

i n t h e s y s t e m p r o v i d e s some o f t he func t ions o f t hese abs t r ac t mach ines

a t its i n t e r f a c e . I n m a c h i n e s p e c i f i c a t i o n s (S e c t i o n IX-D) we fo rma l ly

h a n d l e t h e s i t u a t i o n o f m u l t i p l e i n s t a n c e s by incorpora t ing an a rgument

iden t i fy ing t he p rocesso r on wh ich t he func t ion was ca l l ed . Th i s fo rma l -

i t y i s s t r i c t l y f o r p u r p o s e s o f s p e c i f i c a t i o n s i n c e a t a s k i n s t a n c e c a n

only c a l l func t ions p rovided by the p rocessor on which i t is running.

A t a s k , when i t i s d ispa tched , w i l l a cqu i r e i n fo rma t ion by c a l l i n g

the i n t e r f ace V- func t ions o f t he abs t r ac t mach ines and can change t he

s t a t e of the abs t r ac t mach ines , s ay fo r pu rposes of t r a n s m i t t i n g i n f o r -

m a t i o n t o a n o t h e r t a s k , by c a l l i n g t h e i n t e r f a c e 0 - f u n c t i o n s of the ab-

s t ract machines.

Below we b r i e f l y d i s c u s s t h e a b s t r a c t m a c h i n e s and two e x e c u t i v e

t a s k s ; d e t a i l e d d i s c u s s i o n s are g i v e n i n S e c t i o n s I X - D and IX-E.

Hardware : Th i s mach ine p rov ides t he bas i c p r imi t ive p rocess ing i n -

s t r u c t i o n s (a r i t h m e t i c , l o g i c a l , c o n t r o l) a s s o c i a t e d w i t h e a c h o f t h e

p r o c e s s o r s , i n a d d i t i o n t o t h e few i n s t r u c t i o n s a s s o c i a t e d w i t h t h e b u s

system. None o f t he bus sys t em in s t ruc t ions are v i s i b l e t o t h e a p p l i c a -

t i o n t a s k s . The bas i c mach ine i n s t ruc t ions are v i s i b l e , w i t h t h e excep-

t i o n t h a t a l l main memory r e f e r e n c e s by t a s k s are processed by t h e ma-

chines above the hardware. These extra levels o f i n d i r e c t i o n e n s u r e t h a t

a n e r r a n t t a s k w i l l n o t b e a b l e t o access memory o u t s i d e of i t s workspace.

Memory Addressing: A t a s k d u r i n g i t s e x e c u t i o n r e q u i r e s access t o

memory i n o r d e r t o r ead and wr i t e l oca l d a t a , and to r ead p rog ram in s t ruc -

t i o n s . The memory of concern here is t h e memory a s s o c i a t e d w i t h t h e p r o -

c e s s o r t h a t is e x e c u t i n g t h e t a s k . T h e memory a d d r e s s i n g a b s t r a c t ma-

c h i n e e n s u r e s t h a t e a c h t a s k ' s a c c e s s e s are w i t h i n t h e preset bounds f o r

t h e t a s k . T h i s l e v e l o f i n d i r e c t i o n need no t r e su l t i n i n e f f i c i e n t p r o -

ces s ing o f memory i n s t r u c t i o n s i f h a r d w a r e b a s e a n d bound r e g i s t e r s are

used.

Bus Connection: This machine provides the mechanism for p rocesso r

t o connec t wi th another p rocessor by a p a r t i c u l a r b u s . A t a s k c a n e s t a b -

l i s h a bus connec t ion on ly i nd i r ec t ly , by performing a read i n p u t d a t a

ope ra t ion .

Buf fe r : When t a s k A is t o d e l i v e r d a t a t o t a s k B, the channel i s a

b u f f e r i n t h e p r o c e s s o r o n w h i c h A i s executing and which can be read by

B. Corresponding to each task for which A computes d a t a , t h e r e exists

two b u f f e r s . As we d i s c u s s i n S e c t i o n IX-D two such communication buf-

f e r s are r e q u i r e d s i n c e t h e e x e c u t i o n o f d i f f e r e n t i n s t a n c e s o f t a s k s is

no t t i gh t ly synchron ized . The t a s k s do n o t a c c e s s t h e b u f f e r s d i r e c t l y ;

t h e a c c e s s i s v i a t h e r e a d e r / v o t e r a b s t r a c t m a c h i n e . The b u f f e r s a r e ,

o f course , u l t imate ly implemented in terms of areas of real memory t h a t

on ly the buf fer machine abs t rac t p rograms can access. Also, t h e b u f f e r

machine w i l l e f f e c t t h e n e e d e d b u s c o n n e c t i o n s i n o r d e r t o c a r r y o u t t h e

i n t e r p r o c e s s o r read o p e r a t i o n s .

Dispa tcher : The d i spa tcher abs t rac t machine ho lds , for each pro-

c e s s o r , a s c h e d u l e g i v i n g t h e o r d e r i n w h i c h t a s k s are t o be d i spa tched .

For scheduled tasks (see S e c t i o n V) t he s chedu le i s a c i rcular l i s t of

t a s k names. During a f r ame i n t e rva l success ive t a sks on t he l i s t are

d ispa tched in tu rn . Each f rame conta ins some spare t i m e i n which pr ior-

i t y t a s k s are c o n s i d e r e d f o r d i s p a t c h i n g . A t t he beg inn ing o f t he nex t

f r a m e a n y p r i o r i t y t a s k i n e x e c u t i o n i s in te r rupted , and the next sched-

u l e d t a s k o n t h e c i rcular list i s d i spa tched . A processor can be given

a new s c h e d u l e a f t e r a p r o c e s s o r f a i l u r e o r when a change i n f l i g h t p h a s e

occurs .

Circular L i s t s : This machine p rovides func t ions for main ta in ing and

a c c e s s i n g t h e c i rcular l is ts tha t compr i se t he s chedu les f o r schedhled

t a s k s . I n t h i s m a c h i n e t h e c i rcular l i s ts are stored compact ly as reg-

u l a r expres s ions .

Faul t Schedules : A s noted i n S e c t i o n IX-B, i t is f e a s i b l e t o p r e -

c o m p u t e s c h e d u l e s f o r e a c h o f t h e p r o c e s s o r s t h a t are t o be invoked under

a l l p o s s i b l e p r o c e s s o r f a u l t c o n d i t i o n s . T h e s e s c h e d u l e s are s t o r e d i n

t h e f a u l t s c h e d u l e m a c h i n e f o r access as needed. It i s l i k e l y t h a t e a c h

processor could be preloaded with a l l of t h e s c h e d u l e s t h a t it w i l l need

dur ing a f l i g h t ; t h e a p p r o p r i a t e s c h e d u l e , f o r a g iven state o f t he sys -

t e m , could be selected by t h e g l o b a l e x e c u t i v e .

189

F a u l t S t a t u s : T h i s m a c h i n e is used t o s t o r e t h e s t a t u s (o p e r a t i v e

o r f a i l e d) o f t h e p r o c e s s o r s and buses of the system. A s we w i l l n o t e

below it i s used by t he g loba l execu t ive i n dec id ing t he r econf igu ra t ion

state a f t e r a f a u l t .

ReaderIVoter: This machine serves two purposes: (1) it i s c a l l e d

by a task whenever i t writes d a t a i n t o a b u f f e r f o r a n o t h e r t a s k o r r e a d s

data f rom another task, and (2) it r e c o r d s t h e o c c u r r e n c e o f f a u l t s .

With regard t o (1) t h e m a c h i n e s t o r e s t h e i d e n t i f i c a t i o n o f t h e p r o c e s s o r s

e x e c u t i n g t a s k s a n d t h e b u s e s t o b e u s e d i n r e a d i n g d a t a . F o r a read op-

e r a t i o n , i n which task A reads f rom a b u f f e r l o c a t i o n o f t a s k B, t h e

r e a d e r l v o t e r r e t u r n s t h e m a j o r i t y v a l u e o v e r a l l i n s t a n c e s o f t a s k B.

W i t h r e g a r d t o (2) t h e r e a d e r / v o t e r r e c o r d s t h e o c c u r r e n c e s o f p r o c e s s o r

and bus f a u l t s . A f a u l t becomes manifested as a d e t e c t e d e r r o r i f it

causes a d i s a g r e e m e n t i n a v o t e . M u l t i p l e f a u l t s c a n c a u s e a t a s k t o

f a i l it i f t h e y c a u s e o n e - h a l f o r more a t t h e i n s t a n c e s o f a t a s k t o

p r o d u c e a n e r r o n e o u s r e s u l t i n a n o u t p u t b u f f e r o f t h e t a s k . T h e r e a d e r /

v o t e r r e c o r d s s u c h f a t a l e r r o r o c c u r r e n c e s .

E a c h r e a d e r l v o t e r i n s t a n c e , u p o n d e t e c t i n g a n e r r o r as a d i sag ree -

ment among o n e o r more o f the vo ted inputs , a t t e m p t s t o i d e n t i f y t h e o f -

f e n s i v e u n i t s . It accompl i shes t h i s d i agnos i s by r eco rd ing t he p rocesso r -

bus combinat ions that produced an input in the minori ty . The g l o b a l

execut ive , descr ibed be low, ana lyzes the repor t s o f a l l o f t h e r e a d e r /

v o t e r i n s t a n c e s , a c c o u n t i n g f o r t h e p o s s i b i l i t y o f e r r o n e o u s r e p o r t s f r o m

a f a i l e d p r o c e s s o r .

Above we h a v e b r i e f l y d e s c r i b e d t h e a b s t r a c t m a c h i n e s o f t h e SIFT

sys t em; more de t a i l s are g i v e n i n S e c t i o n IX-D relative t o t h e s p e c i f i -

c a t i o n s . The g loba l execu t ive and l oca l execu t ive p rog rams are b r i e f l y

discussed below.

Global Execut ive : The g loba l execut ive (GE) is s imply a t a s k t h a t

manages t h e s y s t e m r e c o n f i g u r a t i o n a f t e r t h e d e t e c t i o n o f a f a u l t . I t

has access t o t h e g l o b a l s t a t u s o f t h e s y s t e m a n d h e n c e c a n d e t e r m i n e

t h e new system state. The GE shou ld be d i spa tched o f t en enough t o gua r -

a n t e e a r a p i d t r a n s i t i o n t o a recovery state. A p r e l i m i n a r y a n a l y s i s

190

o f t h e e f f e c t s o f r e c o n f i g u r a t i o n t i m e on t h e s y s t e m r e l i a b i l i t y h a s d e -

t e r m i n e d t h a t t h e GE should be dispatched as o f t e n as t h e h i g h e s t - r a t e

a p p l i c a t i o n t a s k . S i n c e t h e GE i s a c r i t i ca l t a sk , it m u s t be executed

redundant ly- -a t least t r i p l i c a t e d .

The opera t ion of (each ins tance o f) the GE is as fo l lows . It reads

t h e e r r o r r e p o r t s o f a l l r eade r lvo te r i n s t ances , and a t t e m p t s t o i d e n t i f y

the f a i l ed p rocesso r s and /o r buses , i f any . The GE w i l l c o r r e c t l y i d e n -

t i f y t h e f a i l e d u n i t s p r o v i d e d f o r e a c h v o t e o n l y a m i n o r i t y o f t h e i n -

p u t s are i n e r r o r . I f t h e GE h a s i d e n t i f i e d a f a i l e d b u s it computes a

new bus assignment, and informs each local executive o f t h i s new as s ign -

ment by communication through a s h a r e d b u f f e r . I f a processor has been

deemed t o h a v e f a i l e d t h e n t h e GE communicates with the local execut ives

t h a t m u s t fo l low new s c h e d u l e s . I n o r d e r t o m a i n t a i n t h e s e r v i c i n g o f

t a s k s d u r i n g a r econf igu ra t ion , on ly one p rocesso r i s p e r m i t t e d t o be i n

t h e r e c o n f i g u r a t i o n s ta te a t a n y i n s t a n t . Hence, t h e GE s e l e c t s a pro-

c e s s o r t o f o l l o w a new schedule , and then awaits the comple t ion o f t h i s

p r o c e s s o r ' s r e c o n f i g u r a t i o n b e f o r e s e l e c t i n g t h e n e x t p r o c e s s o r . T h e

p rocess ing t i m e f o r t h e GE i s dependent on the ex is tence o f an e r ror and

on t h e number o f r e a d e r l v o t e r i n s t a n c e s r e p o r t i n g a n e r r o r . However, t h e

maximum a n t i c i p a t e d p r o c e s s i n g t i m e should be small enough such that

t h e GE can be considered as a scheduled task to be d i spa tched every f rame.

The abs t r ac t imp lemen ta t ion o f t he GE i s d i s c u s s e d i n S e c t i o n IX-F.

By v i r t u e o f t h e a b s t r a c t f u n c t i o n s p r o v i d e d i n t h e SIFT i n t e r f a c e , t h e

program i s r e l a t i v e l y s i m p l e and should be amenable t o p r o o f .

Loca l Execut ive : Each processor conta ins a l o c a l e x e c u t i v e (LE)

which i s a t a s k w h i c h . c o n t r o l s t h e r e c o n f i g u r a t i o n o f t h e p r o c e s s o r as

d i c t a t e d by t h e GE. The LE i s dispatched every f rame and i t s o p e r a t i o n

i s s i m p l y t o r e a d t h e b u f f e r s h a r e d w i t h t h e GE, i n o r d e r t o d e t e r m i n e

i f t h e GE wi shes t o change t he s ta te o f t h e LE'S p rocesso r . Th i s s i m p l e

read operation consumes only a few machine ins t ruc t ions .

However, i f t h e p r o c e s s o r is t o b e s i g n i f i c a n t l y r e c o n f i g u r e d t h e n

it is p r o b a b l y n e c e s s a r y t o s u s p e n d t h e s c h e d u l i n g o f t a s k s u n t i l t h e

r e c o n f i g u r a t i o n i s complete. The LE can accompl i sh t h i s suspens ion by

19 1

c a l l i n g t h e d i s p a t c h e r m a c h i n e t o i n v o k e a schedule which conta ins on ly

t h e LE. Based upon the computa t ion o f t he GE, t h e r e c o n f i g u r a t i o n o f a

p rocesso r cou ld i nvo lve : (1) in fo rming t he LE tha t t he a s s ignmen t o f

t a s k s t o p r o c e s s o r s (e x c l u d i n g t h e LE'S processo r) i s changed, o r (2)

in fo rming t he LE tha t t he bus a s s ignmen t fo r r eads i s changed, o r (3)

i n fo rming t he LE t h a t i t i s t o change the schedule o f i t s processor. The

r e c o n f i g u r a t i o n s a s s o c i a t e d w i t h (1) and (2) are no t t i m e consuming,

mere ly requi r ing the updat ing of the reader lvoter ass ignment t ab les .

The r e c o n f i g u r a t i o n a s s o c i a t e d w i t h (3) is s i g n i f i c a n t , however,

s i n c e it p o s s i b l y i n v o l v e s a major change i n t h e s c h e d u l e o f t h e p r o c e s -

s o r . I f new t a s k s are t o b e a l l o c a t e d t o t h e p r o c e s s o r t h e n a loader p ro-

gram, which could be a separate t a s k o r j u s t a subprogram of the LE, m u s t

be invoked t o s t o r e t h e program code of the new t a s k s i n t h e p r o c e s s o r ' s

memory. The loading i s accompl ished for each task by vo t ing on each of

the instances of the task 's program code. The LE m u s t a s s i g n memory lo-

c a t i o n s i n t h e p r o c e s s o r f o r t h e new tasks and mus t update the t ab les o f

t he bu f fe r and memory a d d r e s s i n g m a c h i n e s t o r e f l e c t t h e new assignment

of t asks . Once the l oad ing and t ab l e upda t ing ope ra t ions are complete,

t h e LE can invoke the new schedule and cause the p rocessor to resume i t s

s e r v i c i n g o f t a s k s .

The LE is a more complicated program than the GE, bu t we f e e l t h a t

it should s t i l l be amenable t o f o r m a l p r o o f . Some of the complexi ty can

be handled by decomposing the LE in to t h ree subprograms , co r re spond ing

t o items (1) through (3) above.

D. Fo rma l Spec i f i ca t ion of SIFT

1. I n t r o d u c t i o n

SIFT is s p e c i f i e d as a hierarchy of Parnas modules . Each mod-

u l e i s regarded as an abs t rac t machine , having i t s own d a t a s t ruc tures

(V-funct ions) and operat ions (O-funct ions) .

A t any given t i m e , t h e state of each machine is j u s t a d e s c r i p t i o n

o f t he i n s t an taneous va lues o f i t s V-functions. The O-functions of a mod-

u l e are o p e r a t i o n s t h a t cause t h e s ta te t o change.

192

The highest module in the hierarchy is an abstract, global

description of what the system does. Modules at lower levels of the hier-

archy can be viewed as building blocks for implementing the highest-

level module. Modules at still lower levels are building blocks for im-

plementing those at the intermediate levels, and so on.

The specifications that follow in subsection IX-D-1 describe

each module independently. By themselves, they say nothing about how the

lowever level modules are actually used to implement those at higher

levels. This information is provided, rather, by mapping functions and

abstract programs. Mapping functions implement the V-functions of a given

module with the V-functions of lower-level modules; abstract programs

implement the O-functions of a given module with programs written in terms
of the O-functions and V-functions of lower-level modules. The mapping

functions and abstract programs for SIFT will have to be specified before

the system can be coded. It should be emphasized however, that the prop-
erties we wish to prove about the SIFT design depend only on the module

specifications--not on the mapping functions or abstract implementation.

(In the same way, the correctness of a FORTRAN program depends only on

the program itself--not on the compiler.)

Parnas modules are specified according to a rigorous syntactic dis-
cipline much like a programming language. Each module specification is

composed of several segments--one for declaration of type variables, one
for defining V-functions and O-functions, and so forth.

The purpose of the various sections of a module specification might
best be explained in relation to a specific example. Consider, then,

the reader/voter module, which has five sections--one for DECLARATIONS,
PARAMETERS, DEFINITION, EXCEPTIONS, and FUNCTIONS. This last section is
actually the most important, since it declares the V-functions and
O-functions of the module.

193

TI

2. The FUNCTIONS section

The first function declared in the FUNCTIONS section of the

reader-voter is the V-function task-set. The function header VFUN task-

set(proc) = st gives the name of the V-function, its formal argument list

(proc), and the result identifier st. The identifiers proc and st. are

declared in the DECLARATIONS section to be of type PROC (processor) and

SET-OF TASK (set of tasks), respectively. The V-function task-set is

thus a data structure which is indexed on PROCs and which stores sets of

TASKS. The INITIALLY phrase in the declaration indicates that at the

time the module is initialized, the value of task-set (on each argument

proc) is the single-element set {le]. The intended interpretation is

just that at initialization of the system, each processor is loaded with

only the local executive task.

The next declaration in the FUNCTIONS section introduces the

V-function proc-bus-assignments, which is keyed on two arguments (a PROC

and a TASK) and which stores sets of PAIRS. Unlike the declaration for

task-set, this one has an EXCEPTIONS subsection. Exception conditions

are boolean expressions used to restrict the domain of a V-function, much

as array bounds in an ALGOL array declaration restrict the domain of the

array. While V-functions may in general have an arbitrary number of

exception conditions, proc-bus-assignments has only one: task-not-in-

proc(proc task). Like all other exception conditions, task-not-in-proc

is defined in the EXCEPTIONS section of the module specification (to be

described later). As is evident from the definition, task-not-in-proc

(proc task) is TRUE for a given value of proc and task if and only if task

is not currently a member of task-set. Thus, just as it is erroneous to

try to read an array outside the limits of its indices, it is erroneous

to try to read proc-bus-assignments at (proc,task) if task & task-set

(proc) at that time. More generally, it is erroneous to try to read any

V-function on arguments that violate any of its exception conditions at

this time.

Declarations that contain a header, a comment, zero or more

exceptions, and an initialization part account for the great majority of

194

V - f u n c t i o n s i n a t y p i c a l module s p e c i f i c a t i o n . I n a d d i t i o n , t h e r e are a

few spec ia l k inds o f V- func t ions t ha t are dec la red somewhat d i f f e r e n t l y :

A DERIVED V-function is one whose v a l u e i s determined completely

by t h e v a l u e s of o ther V-funct ions in the module . The V-funct ion e r ror -

d e t e c t e d , f o r example, i s DERIVED. Its v a l u e is determined completely by

tha t o f t he V- func t ion d i sag reemen t - se t . More p a r t i c u l a r l y , f o r a g iven

va lue o f i ts argument proc, error-detected has the value t r u e i f and only

i f t h e set d isagreement -se t (proc) is non-empty. Although derived V-

f u n c t i o n s are, s t r i c t l y s p e a k i n g , s u p e r f l u o u s , t h e y o f t e n a d d c l a r i t y t o

s p e c i f i c a t i o n s . N o t e t h a t d e r i v e d V - f u n c t i o n s h a v e n o INITIALLY s p e c i f i -

c a t i o n s i n c e t h e i r i n i t i a l v a l u e s are determined by t h e i n i t i a l v a l u e s of

the V-funct ions f rom which they der ive.

A HIDDEN V-function i s one t ha t i s n o t i n t e n d e d t o b e a v a i l a b l e

t o t h e u s e r of the module. The V-function fault , for example, i s HIDDEN

r e f l e c t i n g t h e f a c t t h a t t h e module does no t p rovide d i rec t access to in -

formation about what processors and/or busses are f a u l t y . Note, however,

t h a t t h e v a l u e s o f HIDDEN V-functions do impac t F - f u n c t i o n s t h a t are v i s i -

b l e . Fo r example, t h e DERIVED V-function read i s i n p a r t derived from

f a u l t . A p a r t f rom the des igna t ion HIDDEN, HIDDEN V-functions are s p e c i -

f i e d i n e x a c t l y t h e same way as ordinary V-funct ions.

A thi rd special k ind of V-funct ion, the OV-funct ion, w i l l be

treated l a t e r .

I n a d d i t i o n t o d e c l a r a t i o n s f o r t h e s t o r a g e e l e m e n t s o f t h e

module, t h e FUNCTIONS s e c t i o n c o n t a i n s d e c l a r a t i o n s f o r t h e o p e r a t o r s ,

o r 0 - func t ions , t ha t change t he va lues o f t hose e l emen t s . As wi th V-

f u n c t i o n d e c l a r a t i o n s , e a c h 0 - f u n c t i o n d e c l a r a t i o n b e g i n s w i t h a header

g i v i n g i ts name and formal argument l ist . S ince 0 - func t ions do no t s to re

va lues bu t on ly change the va lues o f V-funct ions , no " r e s u l t " i d e n t i f i e r

i s given. As with V-funct ion dec la ra t ions , an EXCEPTIONS s u b s e c t i o n

may be p re sen t , r e s t r i c t ing t he r ange o f accep tab le a rgumen t s . Once aga in ,

t h e d e f i n i t i o n of each excep t ion cond i t ion a p p e a r s i n t h e EXCEPTIONS sec-

t i o n of t h e m o d u l e s p e c i f i c a t i o n .

195

The substance of an O-function specification is contained in

its EFFECTS subsection--the section that describes exactly what the 0-

function does. More precisely, the EFFECTS section contains a statement

of the relationship between the state of the module (i.e., the values of

its V-functions) before the O-function is called, and the state just

after it is called. The O-function delete-task(proc task) in the reader-

voter is a typical example. This O-function has two effects. It changes

the value of the V-function task-set, deleting task from the set task-

set(proc). It also changes the value of the V-function proc-bus-
assignments, causing it to be undefined for the argument pair (proc,task).

In the specification, quotes are used to distinguish the values of V-

functions before the call from those after the call. Thus, 'task-set

(proc)' refers to the state before the call while task-set(proc) refers

to that after the call.

It is quite important to note that the statements in EFFECTS

sections are assertions, i.e., mathematical statements of a relationship

among states. They are not in any way procedural as would be, say,

assignments in some programming language. For example, the assertion
task-set(proc) = 'task-set(proc)' u {task] could equally well be written

'task-set(proc)' U [task} = task-set(proc)

since the = stand for equality, not for assignment.

Just as HIDDEN V-functions are used to mask certain state in-

formation, HIDDEN O-functions are used to mask certain changes in state.

The O-function cause-fault is of this type. The cause-fault operation

simulates a hardware failure that impacts certain reads. Since this

operation is not really available to the SIFT system but is rather part

of the internal affairs of the module, it is made hidden.

In addition to V-function and O-function declarations, the

FUNCTIONS section contains declarations for a function which is a combi-
nation of the two--the OV-function. An OV-function may be viewed either

as an O-function that returns a value, or as a V-function whose invocation

produces a side effect. The OV-function vote-read is of this kind since

196

i t bo th r e tu rns a va lue o f word and po ten t i a l ly changes t he va lues o f t he

V - f u n c t i o n s f a t a l - e r r o r and disagreement-set .

3 . The DECLARATIONS S e c t i o n

P a r t o f t he spec i f i ca t ion o f any Pa rnas module i s a s e c t i o n de-

c l a r i n g t h e t y p e s o f t h e i d e n t i f i e r s (s u c h as formal arguments t o V- and

O- func t ions) u sed i n o the r parts of t h e module s p e c i f i c a t i o n . I n m o s t

programming languages, declarations are u s e d f o r two p u r p o s e s : t o d i r e c t

a l l o c a t i o n o f s t o r a g e , a n d t o p r o v i d e f o r t y p e - c h e c k i n g . I n t h e P a r n a s

con tex t , s to rage i s associated only with V-funct ions, which are dec lared

i n t h e FUNCTIONS s e c t i o n . The DECLARATIONS s e c t i o n of a module spec i f i -

ca t ion conce rns i t s e l f exc lus ive ly w i th t he t yp ing o f fo rma l a rgumen t s

(i n c l u d i n g t h e "result" arguments of V-functions).

I n t h e DECLARATIONS s e c t i o n o f t he r eade r -vo te r , t he re are

d e c l a r a t i o n s f o r i n t e g e r a n d b o o l e a n i d e n t i f i e r s much i n t h e s t y l e of

ALGOL. Unlike ALGOL, however, the language of module s p e c i f i c a t i o n s

p r o v i d e s a n e x t e n s i b l e t y p e f a c i l i t y , t h a t is, t h e d e s i g n e r of a module

may in t roduce new, a b s t r a c t t y p e s .

F o r t h i s p u r p o s e , t h e DECLARATIONS s e c t i o n may inc lude a TYPE

subsec t ion i n wh ich t ypes (a s opposed t o ob jec t s o f a given type) are

dec la red . The TYPE subsec t ion o f t he r eade r -vo te r con ta ins dec l a ra t ions

f o r t h r e e new p r imi t ive t ypes (PROC, TASK, and MACHINEWORD) and a new

compound type (PAIR). The word "DESIGNATOR" i n d i c a t e s t h a t t h e new type

is p r imi t ive , i.e., is no t cons t ruc t ed f rom ex i s t ing t ypes . The name

PROC s u g g e s t s t h a t o b j e c t s o f t h i s t y p e are in t ended t o des igna te p ro -

ces so r s , as indeed they are. From the formal point of view, however,

ob jec t s o f t ype PROC have no i n t r i n s i c p r o p e r t i e s o t h e r t h a n t h a t t h e y

are d i s t i n c t f r o m a l l objec ts o f any o ther type .

The new t y p e PAIR, o n t h e o t h e r hand, is d e f i n e d i n terms of
more p r i m i t i v e t y p e s . The type des igna t ion STRUCTURE (PROC: p roc , i n t ege r :

b u s) i n d i c a t e s t h a t o b j e c t s of type PAIR a r e composed o f two par ts , one

of which i s a PROC and the other of which i s a n i n t e g e r . The i d e n t i f i e r s

proc and bus i n t h e d e c l a r a t i o n o f PAIR a r e s e l e c t o r s ; g i v e n a n o b j e c t p

197

of type PAIR, p . p r o c r e f e r s t o t h e component of p which i s of type PROC,

a n d p . b u s r e f e r s t o t h a t o f t y p e i n t e g e r .

New types may a l so be deve loped u s ing t he SET-OF o r BAG-OF con-

s t r u c t s . The i d e n t i f i e r s p , f o r example, i s dec la red as a set of o b j e c t s

each of which i s of type PROC. S i m i l a r l y , v o t e s is dec la red as a bag

(t h a t is, a kind of set i n which a g iven member may have r epea ted i n - . -

s t ances) o f MACHINEWORDS.

4 . The PARAMETERS S e c t i o n

The PARAMETERS s e c t i o n c o n t a i n s d e c l a r a t i o n s f o r t h e c o n s t a n t s

of t he des ign . Parameters can be viewed as V-functions whose values are

f ixed once and f o r a l l a t t h e time t h e module i s implemented. They are

f r e q u e n t l y used i n e x c e p t i o n c o n d i t i o n s t o d e s i g n a t e t h e maximum or min i -

mum va lues V- o r 0 - func t ions a rguments may t ake . The i n t e g e r parameter

max-tasks, for example, indicates the maximum number o f t a sks a processor

can accomodate. Max-tasks a p p e a r s i n t h e d e f i n i t i o n o f t h e e x c e p t i o n

condi t ion too-many-tasks. Note that the syntax of parameter d e c l a r a t i o n s

m i r r o r s t h a t o f d e c l a r a t i o n s i n t h e DECLARATIONS s e c t i o n .

5. The DEFINITIONS S e c t i o n

J u s t as assembly language macros save programmers the labor of

w r i t i n g o u t repeated ins t ances o f a r o u t i n e , d e f i n i t i o n a l m a c r o s a l l o w

t h e s p e c i f i e r of a module t o a v o i d r e p e a t e d i n s t a n c e s of an expression.

Each d e f i n i t i o n b e g i n s w i t h a MACRO h e a d e r g i v i n g t h e name of t h e macro,

a (p o s s i b l y empty) formal argument l ist , and a r e s u l t i d e n t i f i e r (u s e d

fo r t ype check ing) .

Two de f in i t i ona l mac ros are used i n t h e r e a d e r - v o t e r module--

m a j o r i t y - o p i n i o n (p r o c t a s k o f f s e t) and d i s s e n t i n g - p a i r s (p r o c t a s k o f f s e t) .

A s i t happens , each def in i t ion i s used only once-- in the EFFECTS s e c t i o n

of the OV-funct ion read-vote . Macros were used in this case not to save

w r i t i n g , b u t t o make the EFFECTS s e c t i o n easier t o r e a d and understand.

198

6 . The EXCEPTIONS Section

Exceptions were described earlier as boolean conditions used to
restrict the intended argument domains of V-functions and 0-functions.

Because a single exception frequently applies to several V- and/or 0-

functions, all exceptions are defined as macros. The syntax used is

exactly the same as that used for macros in the DEFINITIONS section.

Memory Addressing

The functions of the abstract machine instance in processor proc

are called by abstract machine instances above memory addressing in the

hierarchy and tasks executing on proc. These tasks will use memory ad-

dressing in order to execute instructions in their programs and to access

temporary data locations. The machine includes some simple protection

mechanisms in order to prevent a task from writing beyond the limits of
its address space.

Initially the only task known to memory addressing, as indicated by

the value of the V-function task-set, is the local executive (LE). The

V-function mem-area-write defines the memory area allocated to a task for

writing. Initially a fixed area is assigned to the LE; the remaining area
is free as indicated by the value of the V-function area-free. The 0-

functions assign-mem-area and make-free respectively allocate memory area

to a task and deallocate the area that was previously assigned to a task.

In order to ensure than an errant, unproved application task does not

deleteriously affect another task or the system, these functions are not

accessible to application tasks. Instead the LE and the buffer abstract

machine will have the major responsibility for managing the memory in its

processor.

The V-function memory, is called by a task, or an abstract machine

program, in order to read the contents at a memory location. The 0-

function, write, is called in order to modify the value at a location.

199

MODULE memory-addressing

DECLARATIONS

TYPE
PROC, TASK, WORD = DESIGNATOR

END -T Y PE

WORD machineword
boolean b p a r i t y
i n t e g e r o f f s e t l e n g t h a d d r e s s
TASK t a s k
PEOC proc
SET-OF TASK s

END-DECLARATIONS

PARAMETERS

TASK l e (; local e x e c u t i v e t a s k)
SET-OF PROC proc-se t (; s e t of processo r s)
SET-OF TASK t a s k s (; set of v a l i d t a s k s)
i n t e g e r s i z e - l e (; number of words occupied by 1
i n t e g e r
i n t e g e r

- e) .oca1 execut i v
mem-size (; t o t a l number of words o f a s i n g l e memory)
max-tasks (; m a x i m u m a l lowable number of tasks)

END-PARAMETERS

EXCEPTIONS

MACRO no-proc (proc) = b
not proc member-of proc-set

MACRO n o t - a - t a s k (t a s k) = b
n o t t a s k member-of t a s k s

MACRO out-of-bounds(address) = b
addres s > mem-size - 1 o r a d d r e s s < 0

MACRO task-not - in-proc(proc t ask) = b
n o t t a s k member-of ' t a s k - s e t (p r o c) '

MACRO not-authorized-write(proc t a s k a d d r e s s) = b
not(mem-area-write(proc task)[1 3 <= addres s and

address <= mem-area-write(proc task)[11 +
mem-area-write(proc task) C2 I 1

200

MACRO too-many-tasks(proc1 = b
cardinality('task-set(proc) I >= ma-tasks

MACRO task-in-proc(proc task) = b
task member-of ' task-set (proc) '

MACRO area-not-fPee(proc base length) = b
not 'area-free(proc base length)'

MACRO not-a-task(task) = b
not task member-of tasks

END-EXCEPTIONS

FUNCTIONS

VFUN memory(proc address) = word
(; memory contents of processor proc at given address)
EXCEPTIONS
out-of-bounds(address)
no-proc (proc 1

INITIALLY if o <= i <= size-le then memory(proc, i) = mem-le(i.1
else if size-le <= i < mem-size then memory(proc,i) = 0
else undefined

END-EXCEPTIONS

VFUN area-free(proc,base,length) = b
(; indicates whether or not the locations in proc from

EXCEPT IONS
out-of-bounds(base
out-of-bounds(base+length-1)
not-proc(proc)

INITIALLY if base < size-le then area-free(proc,base,i) = false

base to base+length-1 are free)

END-EXCEPTIONS

else area(proc,base,i) = true

V F U N mem-area-write(proc,task) = <base,length>
(; indicates memory range within which task is allowed to write)
EXCEPT IONS
no-proc(proc1
task-not-in-proc(proc, task)

INITIALLY if task = le then
END-EXCEPTIONS

memory-area-write(proc,le) = <O,size-le - 1 >
else undefined

VFUN task-set(proc) = s
(; indicates set of tasks assigned to processor proc)
INITIALLY task-set(proc) = le

201

wuN write(proc task address word)
(; writes word in address of processor PrOC for task task)
EXCEPTIONS
task-not-in-proc(pr0c ,task)
not-proc (proc 1
not-authorized-write(pr0c task address)

EFFECTS
END-EXCEPTIONS

memory(proc ,address) = word
END-EFFEC TS

WUN assign-mem-area(proc task base length)
(; assigns authorized area in proc into which task can write)
EXCEPTIONS

task-in-proc (proc task)
area-not-free(proc base length)
not-a-task(task)

too-many-tasks(proc)

END-EXCEPTIONS
EFFECTS

task-set(proc) = 'task-set(proc) union I task 1
forall i, j (base <= i <= j <= length - 1)

implies area-free(proc i j 1 = false
END-EFFECTS

OFUN make-f'ree(proc task)
(; deassigns task from proc, causing memory occupied by task

EXCEPTIONS
not-proc(proc)
task-not-in-proc(proc task)

EF F EC TS

to be deallocated)

END-EXCEPTIONS

let base = 'mem-area-write(proc task>Cl]'
let length = 'mem-area-write(proc task)[21'
forall i, j (base <= i <= j <= length - 1)

implies area-free(i j)
END-EFFECTS

END-MODULE

202

The Buffer

T h e b u f f e r m o d u l e f a c i l i t a t e s t h e t r a n s f e r o f c o m p u t a t i o n r e s u l t s

f rom one p rocessor to another . The module c o n t a i n s a s t o r a g e area, o r

bu f fe r , f o r each t r i p l e <proc , t ask l , t ask2> such tha t :

(1) proc is a p rocesso r

(2) t a s k l is a t a s k c u r r e n t l y r u n n i n g i n p r o c

(3) t a s k 2 is a t a s k c u r r e n t l y r u n n i n g o n some processor
(p o s s i b l y p r o c) t h a t r e q u i r e s c o m p u t a t i o n r e s u l t s
f rom task l .

The bu f fe r a s soc ia t ed w i th each t r i p l e a c t u a l l y c o n s i s t s o f two sep -

arate s t o r a g e areas: t h e e v e n b u f f e r a n d t h e odd b u f f e r . On even iter-

a t ions o f t he computa t ion fo r a g iven task , results are s t o r e d i n the even

bu f fe r ; on odd i t e r a t i o n s , results are s t o r e d i n t h e odd b u f f e r .

The need f o r s u c h a scheme arises from the kind of synchronizat ion

s i t u a t i o n i l l u s t r a t e d i n F i g u r e IX-3. The f i g u r e shows a few i t e r a t i o n s

of computat ion i n p r o c e s s o r s 1, 2, and 3 . The s o l i d h o r i z o n t a l l i n e s

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

A
"

B
"

B
"

ITERATION 1

A

B
"

B
"

ITERATION 2

A
"

0
"

B

ITERATION 3

FIGURE IX-3 TIMING DIAGRAM FOR TWO COMMUNICATING PROCESSES

r e p r e s e n t i n t e r v a l s d u r i n g w h i c h p a r t i c u l a r tasks are executed. N o w sup-

pose tha t Task B r e q u i r e s f o r i t s inpu t , on each i t e r a t ion , t he ou tpu t

of Task A o n t h e p r e v i o u s i t e r a t i o n . B e c a u s e t a s k s e x e c u t i n g i n d i f f e r -

e n t p r o c e s s o r s are only loose ly synchronized , Task B may not be executed

c o n c u r r e n t l y i n p r o c e s s o r s 2 and 3. More p a r t i c u l a r l y , B may b e g i n i n

p rocesso r 2 befo re A completes i n p r o c e s s o r 1, whi l e B b e g i n s i n p r o c e s s o r s

203

3 a f t e r A completes. I f a s i n g l e s t o r a g e area i s used t o h o l d t h e results

of A, the .programs running B i n p r o c e s s o r s 2 and 3 w i l l r e a d d i f f e r e n t

i n p u t v a l u e s . B e c a u s e t h e s e i n p u t s are s u b j e c t t o v o t i n g , a d i f f i c u l t

arises.

T h e i n t r o d u c t i o n o f s e p a r a t e b u f f e r s f o r odd and even i t e r a t ions

allows programs i n d i f f e r e n t p r o c e s s o r s t o r e a d t h e same d a t a r e g a r d l e s s

o f t h e i r r e l a t i v e p o s i t i o n s i n t h e i t e r a t i o n f r a m e . I n t h e example s i t u -

a t i o n , t h e r e s u l t s o f t h e f i r s t i t e r a t i o n are p l a c e d i n t h e odd b u f f e r

and those o f the second i t e ra t ion are p l a c e d i n t h e e v e n b u f f e r . D u r i n g

the s econd i t e r a t ion f r ame , bo th p rocesso r s runn ing B t a k e t h e i r i n p u t

f rom the odd buffer .

T h e s p e c i f i c a t i o n s f o r t h e b u f f e r m o d u l e are l a r g e l y s e l f - e x p l a n a t o r y .

The module 's chief funct ion i s the OV-funct ion

read(proc1, proc2, bus, t a s k l , t a s k 2 , p a r i t y , o f f s e t) ;

read is c a l l e d by the p rogram running task2 in p roc2 to ob ta in input f rom

t h e p r o g r a m r u n n i n g t a s k l i n p r o c l . I f p a r i t y i s TRUE, t h e a p p r o p r i a t e

e v e n - b u f f e r i n p r o c l i s r ead ; o the rwise , t he odd b u f f e r i s read. The V-
func t ions connec ted- r and connec ted- t model the necessary bus swi t ich ing .

By convention, bus 0 d e s i g n a t e s t h e i n t e r n a l c o n n e c t i o n o f a p rocesso r

t o i t s own memory.

2 04

MODULE buffer

DECLARATIONS
TYPE

PROC = EXTERNAL DESIGNATOR
TASK = EXTERNAL DESIGNATOR
MACHINEWORD = EXTERNAL DESIGNATOR

END-TYPE

integer offset, length, bus, number
boolean b, parity
PROC proc, procl, proc2
TASK taskl, task2, task
MACHINEWORD word

END-DECLARATIONS

PARAMETERS

integer max-buff ;maximum number of buffers allowed in a processor
integer max-buff-size ;maximum size of a buffer
integer numb-busses ;number of busses in system

END-PARAMETERS

EXCEPTIONS

MACRO no-buffer(proc,taskl, task21 = b
not 'buffs-exist(proc,taskl,task2)'

MACRO out-of-bounds(proc,taskl,task2,offset) = b
offset >= 'buffs-size(proc,taskl,task2)'

MACRO buffer-too-long(1ength) = b
length > max-buff-size

MACRO bad-bss(bus) = b
bus > numb-bgsses or bus < 0 or (bus = 0 and not PrOCl = PrOc2)

MACRO same-proc (proc 1, proc2 = b
procl = proc2

END-EXCEPTIONS

205

FUNCTIONS

VFUN connected-r(proc) = bus
(; indicates which bus proc is connected to for receiving data)
HIDDEN
I N I T I A L L Y undefined

VFUN connected-t(bus) = proc
(; indicates which proc bus is connected to for transmitting data)
HIDDEN
I N I T I A L L Y undefined

VFUN buff-mem-odd(proc,taskl,task2,offset) = word
(; stores words in ttcddtt buffer for transmission from

HIDDEN
I N I T I A L L Y undefined

taskl to task21

VFUN buff-mem-even(proc ,taskl, task2,offset) = word
(; stores words in "even" buffer for transmission from

HIDDEN
I N I T I A L L Y undefined

taskl to task21

VFUN buffs-exist(proc,taskl,task2) = b
(; indicates whether buffers exist in proc for the

I N I T I A L L Y undefined
transmission of data from taskl to task21

VFUN buffs-size(proc,taskl,task2) = length
(; indicates size of buffers in proc for transmission of data

EXCEPTIONS
no-buffer(proc,taskl,task2)

I N I T I A L L Y undefined

from taskl to task21

END-EXCEPTIONS

CFUN create-buffers(proc,taskl,task2,length)

will deposit data for task21
(; establisthes buffers of size length in proc in which taskl

EXCEPTIONS
too-many-buffers(proc1
buffer-too-long(1ength)

EFFECTS
END-EXCEPTIONS

buffs-exist(proc,taskl,task2)
buffs-size(proc,taskl,task2) = length
forall i (0 <= i <= length) implies

btlff-mem-odd(proc ,taskl, task21 = 0
forall i (0 <= i <= length) implies

buff-mem-even(proc,taskl,task2) = 0
END-EFFECTS

206

OFUN write(proc,taskl,task2,parity,offset,word)
(; called by taskl to deposit data into the appropriate buffer

for task21
EXCEPT IONS
no-btlffer (proc, taskl, task21
out-of-bounds(proc,taskl,tas.k2,offset)

EFFECTS
END-EXCEPTIONS

if parity then buff-mem-even(proc,taskl,task2,offset) = word
else buff-mem-odd(proc ,taskl, task2,offset) = word

END-EFFECTS

OVFUN read(procl,proc2,bus,taskl,task2,parity,offset~ = word
(; called by task2 running in proc2 to receive data from

EXCEPTIONS
no-buf fer (proc 1, task 1, task2
out-of-bounds(procl,taskl,task2,offset)
bad-bus (bus

EFFECTS

the appropriate buffer deposited by taskl in procl)

END-EXCEPTIONS

if not bus = 0 then connected-r(proc2) = bus
and connected-t(bus) = procl

if parity then word = 'buff-mem-even'(procl,taskl,task2,offset)
else word = 'buff-mem-odd' (procl,taskl,task2,offset)

END-EFFECTS

WUN delete-buffers(proc ,taskl, task21
(; deletes the buffer in proc for the transmission of data

EXCEPT IONS
no-buffer(proc,taskl,task2)

EFFECTS

*om taskl to task21

END-EXCEPTIONS

buf fs-exist (proc, taskl, task2) = false
buffs-size(proc,taskl,task2) = undefined
buff-mem-even(proc,taskl,task2, offset) = Llndefined
buff-mem-odd(proc,taskl,task2, offset) = undefined

END-EFFECTS
END-FUNCTIONS

END-MODULE

207

. .

Dispa tche r

The p r imary ro l e o f t he d i spa tche r i s t o s t o r e t a s k s c h e d u l e s a n d

d i s p a t c h t a s k s as d i c t a t e d by the cu r ren t ly app ly ing s chedu le and by

e x t e r n a l e v e n t s .

The d i spa tcher responds to the passage of t i m e i n d e t e r m i n i n g t h e

t a s k t o be dispatched. There are two c l o c k s p e r t i n e n t t o t h i s m a c h i n e :

a h igh s p e e d c lock , as r ep resen ted by t h e 0 - f u n c t i o n timer, and a slower

c l o c k as rep resen ted by the 0 - func t ion c lock - t i ck . Each o f t hese t iming

0 - func t ions i s assumed t o b e c a l l e d by a separate independent process

tha t can ope ra t e a synchronous ly w i th t he o the r sys t em t a sks . Tha t is,

t h e s e c l o c k s are treated l i k e i n t e r r u p t s i g n a l s .

The in t e rva l be tween success ive c lock - t i cks is called a frame. The

f a s t e s t t a s k s are d ispa tched once every f rame; s lower t asks are d i spa tched

every n- th f rame, n > 1. A s p r e v i o u s l y n o t e d , t h e d i s p a t c h e r h a n d l e s two

types o f t asks : scheduled and pr ior i ty . The schedu led t a sks run t o com-

p l e t ion eve ry t i m e they are d i spa tched . A t a s k calls the 0 - func t ion j ob -

complete t o i n d i c a t e t h a t i s has completed execut ion. Each task i s a l s o

g iven a maximum t i m e fo r execu t ion , as measured by c a l l s on t i m e r . The

V-funct ion max-task-t ime records the maximum allowed t i m e , and t h e V-

func t ion t ime-cur ren t - task records the remain ing execut ion time. I f a

t a sk ove r runs it i s undispa tched and the next t ask i s dispatched. The

in fo rma t ion t ha t t he d i spa tche r needs abou t s chedu led t a sks i s provided

by t h e LE c a l l i n g t h e 0 - f u n c t i o n a d d - r e g u l a r l y - s c h e d u l e d t a s k . B e s i d e s

s e t t i n g t h e v a l u e f o r m a x - t a s k - t i m e , t h i s f u n c t i o n a l s o makes known t h e

i n i t i a l s t a t u s of a t a s k (e.g., e n t r y p o i n t , i n i t i a l v a l u e o f r e g i s t e r s)

t o t h e d i s p a t c h e r . The actual s c h e d u l e i t s e l f i s g i v e n t o t h e d i s p a t c h e r

by c a l l i n g t h e 0 - f u n c t i o n a d d - r e g u l a r - s c h e d u l e . A schedu le i s a c i r c u l a r

l ist of scheduled tasks , wi th a p o i n t e r i d e n t i f i e d by nex t - se l ec t ed -

element.

P r i o r i t y t a s k s are o n l y e l i g i b l e t o b e d i s p a t c h e d when a l l o f t h e

scheduled tasks have comple ted the i r execut ion in a frame. The parameter

gp t , when i t a p p e a r s i n a s c h e d u l e i n d i c a t e s t h a t a p r i o r i t y t a s k is t o

be dispatched. A c l o c k t i c k o c c u r r i n g d u r i n g t h e e x e c u t i o n o f a p r i o r i t y

208 ,

t a s k s i g n i f i e s t h a t t h e s ta tus o f t h e c u r r e n t l y e x e c u t i n g p r i o r i t y t a s k

is to be s aved , and t he nex t s chedu led t a sk i s t o be dispatched. When a

p r i o r i t y t a s k c o m p l e t e s its e x e c u t i o n , o r i t s execu t ion t i m e exceeds the

va lue o f max- t a sk - t ime ano the r p r io r i ty t a sk is c o n s i d e r e d f o r d i s p a t c h -

i n g . T h e p r i o r i t y t a s k s e l e c t e d i s t h e t a s k - o f t h e h i g h e s t p r i o r i t y , as

r e f l e c t e d by t h e v a l u e o f t h e V - f u n c t i o n , p r i o r i t y , s u c h t h a t t h e t i m e

s i n c e i ts last execu t ion exceeds t he des i r ed pe r iod fo r t ha t t a sk , as

r e f l e c t e d by t h e v a l u e o f t h e V - f u n c t i o n p e r i o d - p r i o r i t y . I n f o r m a t i o n

a b o u t p r i o r i t y t a s k s i s g i v e n t o t h e d i s p a t c h e r v i a t h e O - f u n c t i o n a d d -

p r i o r i t y - t a s k .

The d i spa tche r , u s ing t he V- func t ion i t e r - coun t , r eco rds t he number

o f i t e r a t ions comple t ed by each task .

209

MODULE d i s p a t c h e r

IECLARATIONS

TYPE
TASK = DESIGNATOR
TIME = DESIGNATOR
MACHINEWORD = DESIGNATOR

END-TYPE

i n t e g e r p o s i n t
boolean b
TIME time, t i m e l , t i m e 2
TASK t a s k
MACHINEWORD word
CIRCULAR-LIST t a s k - l i s t
TUPLE-OF MACHINEWORD word-tuple
ONE-OF {regular, p r io r i ty) k ind -o f - t a sk

END-DECLARATIONS

PARAMETERS

TASK l e (; local e x e c u t i v e t a s k)
TASK gp t (; g e n e r i c p r i o r i t y t a s k - - GPT i s the l l cu r ren t - t a sk l l

when a s p e c i f i c p r i o r i t y t a s k i s t o be
sc hed u l ed

real t a s k is t o be scheduled)
TASK n u l l - t a s k (; t h e empty p r i o r i t y t a s k used t o f i l l i n when no

TUPLE-OF MACHINEWORD ze ro - tup le (; t u p l e c o n s i s t i n g of a l l ze ro words)
TUPLE-OF MACHINEWORD status-le (; i n i t i a l s t a t u s o f l o c a l e x e c u t i v e)
i n t e g e r pn (; p r i o r i t y l e v e l o f n u l l - t a s k 1
integer max-scheduled-tasks (; m a x i m u m n m b e r o f

r e g u l a r l y s c h e d u l e d t a s k s)
in teger max-pr ior i ty- tasks (; maximum number o f p r i o r i t y t a s k s)
i n t e g e r s t a t u s - l e n g t h (; number of machine words

TIME max-time-le (; maximum execu t ion time for local execu t ive)
TIME max-time-null-task (; maximum execu t ion time for n u l l task)

compris ing status o f a n y t a s k)

END-PARAMETERS

DEF I N I T IONS

dispa tch-next - regular - task
cu r ren t - t a sk = currently-selected-element(ltask-list')
c = advance - se l ec to r (t a sk - l i s t)
t ime-current- task =

s t a tus -cu r ren t - t a sk = *initial-status-task(current-task)t
'max-task-time(currently-selected-element(?task-list?))?

210

d i spa tch - in t e r rup ted -p r io r i ty - t a sk
c u r r e n t - t a s k = currently-selected-element('task-1ist ')
c = advance-selector('task-list')
t ime-current- task = ' t ime- in te r rupted- task '
s t a tus -cu r ren t - t a sk = ' s t a tu s - in t e r rup ted - t a sk '

s ave - s t a tus -cu r ren t -p r io r i ty - t a sk
t ime- in te r rupted- task = ' t ime-current- task '
s t a t u s - i n t e r r u p t e d - t a s k = ' s t a tu s -cu r ren t - t a sk '

d i spa tch -nex t -p r io r i ty - t a sk
l e t s = { task I task member-of ' p r i o r i t y - t a s k - s e t ' and

e x i s t s taskl
'time-to-next-exec (t a sk) = 0 1

t a s k l member-of s
fo ra l l t a s k 2 t a s k 2 member-of s i m p l i e s

c w r e n t - p r i o r i t y - t a s k = taskl
t ime-cur ren t - task = 'ma - t a sk - t ime(t a sk1) '
s t a tus -cu r ren t - t a sk = ' i n i t i a l - s t a t m - t a s k (t a s k l
time-to-next-exec(task1) = 'period-priority(task1)'

' p r i o r i t y (t a s k 1 1' <= ' p r i o r i t y (t a s k 2) '

END-DEFINITIONS

EXCEPTIONS

MACRO no - t a sk (t a sk) = b
n o t t a s k member-of task-set and
n o t t a s k member-of p r i o r i t y - t a s k - s e t

MACRO t a sk - i s -gp t (t a sk) = b
t a s k = gpt

MACRO not-a-priority-task(task) = b
n o t task member-of p r i o r i t y - t a s k - s e t

MACRO task-already-known(task) = b
task member-of task-set or t a s k member-of p r i o r i t y - t a s k - s e t

MACRO too-many-regular-tasks = b
c a r d i n a l i t y (t a s k - s e t) >= max-scheduled-tasks

MACRO tuple-wrong-length(word-tuple) = b
not l ength(word- tuple) = s t a t u s - l e n g t h

211

MACRO too-many-prior i ty- tasks = b
cardinality(pri0rity-task-set) >= max-prior i ty- tasks

MACRO task-not - regular (task) = b
n o t t a s k member-of task-set

MACRO no t - cu r ren t - t a sk (t a sk) = b
n o t t ask = ' c u r r e n t t a sk '

MACRO n u l l - t a s k (t a s k 1 = b
t a s k = n u l l - t a s k

MACRO next-task-not-known = b
n o t next-selected-task('task-list'1 member-of 'task-set'

MACRO cu r ren t - t a sk -no t -p r io r i ty = b

MACRO n e x t - t a s k - p r i o r i t y = b
no t ' cu r r en t - t a sk ' = gpt

next-selected-element('task-list') = gp t

END-EXCEPTIONS

FUNCTIONS

VFUN task-set = s
(; s e t of a l l r e g u l a r t a s k s a s s i g n e d t o d i s p a t c h e r)
EXCEPTIONS

INITIALLY s = { le , g p t)
END-EXCEPTIONS

VFUN t a s k - l i s t = c
(; c i r c u l a r l ist o f r egu la r ly - schedu led tasks)
EXCEPTIONS

INITIALLY c = NEW c i rcu lar - l i s t (l e , g p t)
END-EXCEPTIONS

VFUN max-task-time(task1 = time
(; maximum time a l lowed fo r execu t ion of a schedu led t a sk)
EXCEPT IONS
no- task(task1
task- is-gpt (t a s k)

INITIALLY ma-task-time(task) =
END-EXCEPTIONS

if t a s k = l e then max-time-le-task
else i f task = null - task then max-t ime-nul l - task

else undefined

VFUN c u r r e n t - t a s k = t ask
(; cur ren t ly d i spa tched s chedu led t a sk)
EXCEPTIONS

INITIALLY c u r r e n t - t a s k = l e
END-EXCEPTIONS

212

VF.m t ime-cur ren t - task = time
(; a l lowab le time remaining for c u r r e n t l y d i s p a t c h e d task)
EXCEPT IONS

INITIALLY time = time-le
END-EXCEPTIONS

WUN s t a t u s - c u r r e n t - t a s k = word-tuple
(; s t a t u s (v a l u e s of program counter and other registers)

EXCEPTIONS

I N I T I A L L Y s t a tus -cu r ren t - t a sk = status-le

, of c u r r e n t l y d i s p a t c h e d t a s k)

END-EXCEPTIONS

WUN initial-status-task(task) = word-tuple
(; i n i t i a l s t a t u s of e a c h t a s k)
EXCEPTIONS
no - t a sk (t a sk)

INITIALLY i n i t i a l - s t a t u s - t a s k (1 e) = s t a t u s - l e
END-EXCEPTIONS

initial-status-task(nul1-task) = zero- tuple

VFUN s t a t u s - i n t e r r u p t e d - t a s k = word-tuple
(; h o l d s s t a tus o f i n t e r r r u p t e d p r i o r i t y j o b)
EXCEPTIONS

INITIALLY s t a t u s - i n t e r r r u p t e d - t a s k = zero- tuple
END-EXCEPTIONS

V F U N c u r r e n t - p r i o r i t y - t a s k = t a s k
(; g i v e s i d e n t i t y of c u r r e n t l y e x e c u t i n g or

EXCEPTIONS

INITIALLY task = n u l l - t a s k

i n t e r r u p t e d p r i o r i t y t a s k)

END-EXCEPTIONS

VFUN t ime- in te r rupted- task = time
(; remaining execQtion time f o r i n t e r r u p t e d p r i o r i t y t a sk)
EXCEPTIONS

INITIALLY time = 0
END-EXCEPTIONS

VFUN overrun- tasks = < sl, 92 >
(; i n d i c a t e s t a s k s w h i c h h a v e o v e r r u n t h e i r a l l o t t ed times;
s l is se t of schedu led t a sks ; s2 is set of p r i o r i t y t a s k s)

E XC EPT IONS
NO-EXCEPTIONS
I N I T I A L L Y ~l I)

s2 = { I

VFUN p r i o r i t y (t a s k 1 = p o s i n t
(; p r i o r i t y l e v e l of p r i o r i t y t a s k - - s m a l l e r v a l u e s i n d i c a t e

EXCEPT IONS
not-a-priority-task(task1

INITIALLY p r i o r i t y (n u l 1 - t a s k) = pn

h i g h e r p r i o r i t y)

END-EXCEPTIONS

213

. , . . , ." - . . ." .

V F U N p e r i o d - p r i o r i t y (t a s k) = time
(; m i n i m u m schedul ing f requency for p r i o r i t y task

EXCEPTIONS
not-a-priority-task(task)

INITIALLY time = 0

measured i n c l o c k ticks)

END-EXCEPTIONS-

VFUN time-to-next-exec(task1 = time
(; minimum allowable time to n e x t d i s p a t c h i n g

EXCEPTIONS
not-a-priority-task(task)

INITIALLY time-to-next-exec(nul1-task) = 0

of p r i o r i t y t ask t ask)

END-EXCEPTIONS

VFUN i t e r - c o u n t (t a s k) = p o s i n t
(; i n d i c a t e s t h e number o f i t e r a t i o n s c o m p l e t e d by task)
EXCEPTIONS
no-task(task)

I N I T I A L L Y i t e r - coun t (1e) = 0
END-EXCEPTIONS

i t e r - coun t (nu l1 - t a sk) = 0

OFUN add-regular ly-scheduled-task(task, t ime,word-tuple)
(; makes new t a s k known to d i spa tcher - - informat ion concern ing

m a x i m a n execut ion time and i n i t i a l s t a t u s are passed)
EXCEPTIONS
task-already-known(task)
too-many-scheduled-tasks
tuple-wrong-length(word-tuple)

EF F EC TS
END-EXCEPTIONS

task-set = ' task-set' union {task)
ma-task-time(task) = time
initial-status-task(task1 = word-tuple
i t e r - c o u n t (t a s k) = 0

END-EFFECTS

OFUN delete-scheduled-task(task)
(; removes regular ly scheduled task task)
EXCEPTIONS
task-not - regular (t ask)

EFFECTS
END-EXCEPTIONS

task-set = ' task-set' - {task)
max-task-time(task) = undefined
initial-status-task(task) = undefined
in t e r - coun t (task) = undefined

END-EFFECTS

2 14

OFUN add-regular-schedule(c)
(; give t h e schedule of r e g u l a r l y s c h e d u l e d t a s k s as t h e

EXCEPTIONS

EFFECTS

circular list c)

END-EXCEPTIONS

t a s k - l i s t = c
END-EFFECTS

CFUN add-priority-task(task,posint,timel,time2,word-tuple~
(; makes a new p r i o r i t y t a s k w i t h p r i o r i t y l e v e l p o s i n t

m a x i m u m execu t ion time timel, m i n i m l a m time between
e x e c u t i o n s t i m e 2 , a n d i n i t i a l s t a t u s w o r d - t u p l e
known to t h e d i s p a t c h e r)

EXCEPTIONS
task-already-known(task)
too-many-priority-tasks
tuple-wrong-length(word-tuple)

EF FEC TS
END-EXCEPTIONS

p r i o r i t y - t a s k - s e t = ' p r io r i ty - t a sk - se t ' un ion { t a s k]
max-task-time(task) = t ime l
i n i t i a l - s t a t m - t a s k (t a s k) = word-tuple
i t e r - c o u n t (t a s k) = 0
p r i o r i t y (t a s k 1 = p o s i n t
p e r i o d - p r i o r i t y (task) = t ime2
time-to-next-exec(task1 = 0

END-EFFECTS

WUN delete-priority-task(task1
(; removes p r i o r i t y t a s k task)
EXCEPTIONS
not-a-priority-task(task)

EFFECTS
END-EXCEPTIONS

p r i o r i t y - t a s k - s e t = ' p r io r i ty - t a sk - se t ' - {task)
ma- t a sk - t ime(t a sk) = undefined
initial-status-task(task) = undefined
iter-count(task1 = m d e f i n e d
p r i o r i t y (t a s k) = m d e f i n e d
p e r i o d - p r i o r i t y (t a s k 1 = undefined
t ime-to-next-exec(task) = undefined

END-EFFECTS

C F U N assign-iter-count(task,posint)
(; a s s i g n s i t e r a t i o n count p o s i n t t o t a s k)
EXCEPTIONS
no- task(task1

EFFECTS
END-EXCEPTIONS

i t e r - c o u n t (t a s k 1 = p o s i n t
END-EFFECTS

215

OFUN job-complete(task)
(; called by c u r r e n t l y d i s p a t c h e d task on comple t ing

execu t ion ; a new task i s then d i spa tched- - i f task i s a
p r i o r i t y t a s k , t h e new t a s k will be as well. i f t a s k i s
a r e g u l a r l y - s c h e d u l e d t a s k , t h e new task may be e i ther
s c h e d u l e d o r p r i o r i t y . we assrune t h a t n u l l - t a s k n e v e r
c a l l s job-complete.)

EXCEPT IONS
n u l l - t a s k (t a s k)
n o t - c u r r e n t - t a s k (t a s k)
next-task-not-known

EFFECTS
END-EXCEPTIONS

i t e r - c o u n t (t a s k 1 = ' i t e r - c o m t (t a s k) ' + 1
i f n o t ' c u r r e n t - t a s k ' = gpt

and not next-selected-task('task-list') = gpt
t hen d i spa tch -nex t - r egu la r - t a sk

e lse i f n o t ' c u r r e n t - t a s k ' = gpt and
nex t - se l ec t ed - t a sk = gp t

t h e n d i s p a t c h - i n t e r r u p t e d - p r i o r i t y - t a s k
else d i s p a t c h - n e x t - p r i o r i t y - t a s k

END-EFFECTS

OFUN clock-tick
(; s i g n a l s i n t e r r u p t i o n o f p r i o r i t y t a s k and subsequent

d i s p a t c h i n g of r egu la r ly - schedu led task)
EXCEPTIONS

c u r r e n t - t a s k - n o t - p r i o r i t y
n e x t - t a s k - p r i o r i t y
ne.xt-task-not-known

EFFECTS
END-EZZEPTIONS

f o r a l l t a s k t a s k member-of ' p r i o r i t y - t a s k - s e t ' and
n o t 'time-to-next-exec(task)' 0

imp1 ies
time-to-next-exec (task) =

'time-to-next-exec(task)' - 1
s a v e - s t a t u s - c u r r e n t - p r i o r i t y - t a s k
d ispa tch-next -scheduled- task

END-EFFECTS

216

OFUN timer
(; decrements time remaining for c u r r e n t t a s k , logs

EXCEPTIONS
next-task-not-known

EF F EC TS

error a n d d i s p a t c h e s n e x t task i f o v e r r u n o c c u r s)

END-EXCEPTIONS

t ime-cur ren t - task = ' t ime-cur ren t - task ' - 1
i f t ime-cur ren t - task = 0 t h e n

i f ' c u r r e n t - t a s k ' = g p t t h e n
over run- tasks[2 1 =

' over run- tasks ' [2] un ion i ' c u r r e n t - p r i o r i t y
- task ' 1

else overrun-tasks[1 I =
' over run- tasks ' [11 un ion i ' c u r r e n t - t a s k ' 1

n o t next-selected-element('task-list' = g p t t h e n
i f n o t ' c u r r e n t - t a s k ' = gpt and

dispatch-next-scheduled-task
else i f n o t ' c u r r e n t - t a s k ' = gpt

and next-selected-element(' t ask- l i s t ' = g p t
then
d i s p a t c h - i n t e r r u p t e d - p r i o r i t y - t a s k

else d i s p a t c h - n e x t - p r i o r i t y - t a s k
END-EFFECTS

217

The Reader-Voter

The reader-voter module provides the means of comparing results of

different processors working on the same task. In the present design, it

is the only mechanism for detecting failures, including those uncovered

during diagnosis. The reader-voter is therefore at the heart of SIFT's

fault-tolerance machinery.

The reader-voter is also the lowest module in the system in which

processor and bus failures are explicitly modeled. The reason is that

this module is conceptually the lowest point at which errors are intro-

duced. From the point of view'of the global executive, if the reader-

voter has not recorded a voting-discrepancy, no fault has occurred--even

if certain busses and processors have in reality failed. One must bear

in mind, of course, that the reader-voter, like all of SIFT's functions,

is actually distributed among the processors of the system--the global

executive compares results obtained by reader-voters in all modules and

is aware of the possibility of a fault affecting some processor's reader-

voter program.

The central focus of the module is the OV-function vote-read(proc

task offset). This function is used by the program associated with the

task task running in processor proc. The effect of vote-read is to read

(via the bus network) the contents of the virtual address <task, offset>

of every processor performing the task task, and then vote on the results.

If some value receives a simple majority, that value is returned; other-

wise, the flag fatal-error is set, and undefined is returned as the value

of the call. In either case, unless the vote is unanimous, the flag

error-detected is set, and the details of the disagreement are logged.

The outcome of a call on vote-read depends on a number of factors.

It clearly depends on whether and which processors executing task are

faulty at the time. It similarly depends on which busses used in com-
municating with these processors are faulty. Naturally, the outcome also

depends on what the polled values actually are, right or wrong.

218

The o ther V- and O-functions i n t h e module are used t o model t h e s e

cons idera t ions . The mos t impor tan t o f these are the V-funct ions proc-bus-

ass ignments , faul t , correct-read, and read.

Proc-bus-assignments i s a V-function of two arguments, proc and task.

Fo r each p rocesso r and each t a sk execu ted w i th in t ha t p rocesso r , it

s t o r e s t h e i n f o r m a t i o n as t o what busses are t o b e u s e d i n r e a d i n g v a l u e s

f rom the o the r p rocesso r s execu t ing t he t a sk . Th i s i n fo rma t ion i s r e p r e -

s en ted as a set of PAIRS. Each pa i r has two p a r t s : a p roc pa r t des ig -

n a t i n g a processor , and a b u s p a r t d e s i g n a t i n g t h e b u s t o b e u s e d i n

r ead ing f rom tha t p rocesso r . I t might be no ted tha t the set pro-bus-

ass ignments (proc t ask) may c o n t a i n a p a i r whose p rocesso r component is

p r o c i t s e l f - - i n o t h e r w o r d s , a p rocesso r may wish t o read from i t s e l f o v e r

a bus. A d i a g n o s t i c r o u t i n e , f o r example, might need t h i s c a p a b i l i t y .

The V-funct ion fau l t is used t o keep t r ack o f f au l t s i n t he ha rdware .

F o r p a r t i c u l a r v a l u e s of its arguments procl, proc2, bus, task, and off-

set, it r e t u r n s TRUE o r FALSE depending on whether or not a f a u l t exists

t h a t impac t s a read by p roc l , us ing bus bus , o f the v i r tua l loca t ion

< ta sk , o f f se t> i n p roc2 . No te t ha t t h i s V- func t ion is gene ra l enough t o

model a complete breakdown of a p r o c o r b u s . I f f o r example, bus 1 i s

s e v e r e d , f a u l t r e t u r n s t r u e o n a l l legi t imate combinat ions of arguments

for which bus = 1. Because f au l t i s n o t i n t e n d e d t o b e v i s i b l e o u t s i d e

t h e module, i t is dec la red HIDDEN. Another HIDDEN V-funct ion , cor rec t -

r e a d (t a s k o f f s e t) , r e t u r n s t h e v a l u e o n e would e x p e c t t o f i n d i n t h e

v i r t u a l l o c a t i o n < t a s k , o f f s e t > o f a non-fau l ty p rocessor working on t ask .

L i k e f a u l t , c o r r e c t - r e a d is a b s t r a c t i n t h e s e n s e t h a t it i s n o t a c t u a l l y

implemented i n t h e SIFT so f tware . It i s d e f i n e d , r a t h e r , i n terms o f a n

i d e a l p r o c e s s o r .

The V-funct ion read(proc1, proc2, bus, task, offset) del ivers the

r e s u l t o f a read by p r o c l , o v e r b u s b u s , o f t h e l o c a t i o n < t a s k , o f f s e t 3

i n proc2. I f a f a u l t c o n d i t i o n exists w h i c h a f f e c t s t h a t read (as d e t e r -

mined by the V-funct ion fau l t) , an undetermined va lue i s re turned . Other -

wi se , t h e c o r r e c t v a l u e c o r r e c t - r e a d (t a s k o f f s e t) is returned. Note

t h a t t h e v a l u e o f r e a d is comple te ly de te r in ined by the va lues o f fau l t

and cor rec t - read; read is t h e r e f o r e a DERIVED V-function.

219

MODULE reade r -vo te r

DECLARATIONS

TYPE
PROC = DESIGNATOR
TASK = DESIGNATOR
MACHINEWORD = DESIGNATOR
PAIR = STRUCTURE(PR0C: proc, i n t e g e r : b u s)

END-TYPE

PROC proc, procl, proc2
SET-OF PROC s p
TASK task, t a s k l , t a s k 2
SET-OF TASK st
PAIR p a i r , pa i r1
SET-OF PAIR setpairs
MACHINEWORD word, word 1
BAG-OF MACHINEWORD v o t e s
boolean b
i n t e g e r b u s , o f f s e t

END-DECLARATIONS

PARAMETERS

END-PARAMETERS

DEF I N I T IONS

MACRO major i ty-opin ion(proc t a s k o f f se t) = word
LET v o t e s =

BAG {word1 I e x i s t s pair
pair member-of 'proc-bus-assignments(proc task) '
and word = 'read(proc pair.proc pa i r . bus t a s k

o f f se t) 1

i f e x i s t s word 1
word1 member-of v o t e s

a n d m u l t i p l i c i t y (w o r d 1 , v o t e s) >
(1 / 2) c a r d i n a l i t y (v o t e s)

then word = word1
e lse word = undefined

220

MACRO dissenting-pairs(proc task offset) = setpairs
if majority-opinion(proc task offset) = undefined
then setpairs = 'proc-bus-assignment(proc task)'

el se
setpairs =
{pair f pair member-of 'proc-bus-assignments(proc task) '

and not 'read(proc pair.proc pair. bus task offset)'
= majority-opinion(proc task offset) 1

E N D - D E F I N I T I O N S

EXCEPTIONS

MACRO no-proc-bus-assignment(proc1 proc2 bus task) = b
not exists pair

pair member-of 'proc-bus-assignment(proc1 task)'
and pair .proc = proc2
'and pair.bus = bus

MACRO bad-offset(task offset) = b
offset < : or offset > max-offset(task)

MACRO not-assigned(task) = b
not exists proc

task member-of ' task-set(proc)
MACRO bad-assignment(proc task setpairs) = b

exists pair
pair member-of setpairs

and (pair.bus > maxbusses or
exists pair 1

pair 1 member-of se tpairs
and (pair.bus = pair1 .bus

or pair .proc = pair 1 .proc) 1

MACRO too-many-tasks(proc1 = b
cardinality('task-set(proc) ' >= ma-tasks

END-EXCEPTIONS

FUNCTIONS

VFUN task-set(proc) = st
(; set of tasks assigned to processor proc)
I N I T I A L L Y st = { le 1

221

VF UN proc-bus-assignments(proc task) = se tpa i rs
(; for each proc and task , y ie lds se t o f PAIRS--one pair

for each other processor working on that task; the first
component of each pair names the processor, the second gives
the bus assignment for reading from that processor)

EXCEPTIONS
task-not-in-proc(proc task)

I N I T I A U Y undefined
END-EXCEPTIONS

VFUN fault(proc1 proc2 bus t ask o f fse t) = b
(; indicates whether or not a f a u l t e x i s t s t h a t impacts a read

by procl using bus bus of t h e memory of proc2 a t t h e
location associated w i t h t ask , o f fse t)

HIDDEN
EXCEPTIONS
no-proc-bus-assignment(proc1 proc2 bus task)
bad-offset(task offset)

INITIALLY fa l se
END-EXCEPTIONS

VFUN correc t-read (task ofset = word
(; resu l t tha t one would expect from a non-faulty module)
HIDDEN
EXCEPTIONS
not-assigned(task1
bad-offset(task offset)

I N I T I A L L Y undefined
END-EXCEPTIONS

VFUN read(proc1 proc2 bus t ask o f fse t) = word

and offset i n proc2 using bus b u s)
(; result of procl's reading of location associated w i t h task

DERIVED
DERIVATION

i f fault(proc1 proc2 bus task offset) then

else word = correct-read(task offset)
word = tundetermined

OVFUN vote-read(proc task offset) = word
(; returns majority vote on value associated w i t h task and

offset . i f vote is not unanimous, disagreements a re logged.
if no majority exists, returns undefined and s e t s
fatal-error f lag)

EXCEPTIONS
task-not-in-proc(proc task)
bad-offset(task offset)

EFFECTS
END-EXCEPTIONS

word = majority-opinion(proc task offset)
i f word = undefined then fatal-error(proc) = true
disagreement-set(proc) =

dissenting-pairs(proc task offset)
END-EFFECTS

222

C F U N e r ro r -de tec t ed (p roc1 = b
(; f lag i n d i c a t i n g t h a t d i s a g r e e m e n t ex is t s)
DERIVATION

not d i sagreement -se t (proc) = i 1

VFUN f a t a l - e r r o r (p r o c) = b
(; f l ag t h a t i n d i c a t e s l a c k of a m a j o r i t y)
INITIALLY fa l se

OFUN a s s i g n - t a s k (p r o c t a s k s e t p a i r s)
(; a s s i g n s new t a s k t o proc- s e t p a i r s i n d i c a t e s t h e o t h e r

process’ws working on that task and the busses t o be used
i n r e a d i n g from them)

EXCEPTIONS
b a d - a s s i g n m e n t (p r o c t a s k s e t p a i r s)
too-many-tasks (proc

EF FEC TS
END-EXCEPTIONS

t a sk - se t (p roc1 = ‘ t a sk - se t (p roc)* Union { t a s k)
proc-bus-assignments(proc , t a s k) = s e t p a i r s

END-EFFECTS

OFUN d e l e t e - t a s k (p r o c t a s k)
(; d e a s s i g n s t a s k t o p roc)
EXCEPTIONS
task-not- in-proc (proc task)

EFFECTS
END-EXCEPTIONS

task-se t (proc = * task-se t (proc * - { t a sk1
proc-bus-assignments(proc t a s k) = s e t p a i r s

END-EFFECTS

OFUN cause- fau l t (proc1 proc2 bus t ask o f fse t)
(; produces a fau l t t h a t affects reads by p roc l over bus b u s

H I D D E N
EXCEPT I O N S
b a d - o f f s e t (t a s k o f f se t)

EF FEZ TS

of l o c a t i o n i n p r o c 2 a s s o c i a t e d w i t h t a s k , o f f se t)

END-EXCEPTIONS

fau l t (p roc1 p roc2 bus t a sk o f f se t) = true
END-EFFECTS

223

.

OFUN change-correct-read(task offset word)
(; updates correct-read to give correct result for current

HIDDEN
EXCEPTIONS
not-assigned(task)
bad-offset(offset)

EFFECTS

iteration)

END-EXCEPTIONS

corect-read(task offset) = word
END-EFFECTS

END-FUNCTIONS

ENDAODULE

2 24

REFERENCE

1. D . L . Parnas , "A Technique f o r Module Spec i f ica t ion wi th Examples ,"
Corn. ACM, Vol. 15, No. 5, p p . 199-218 (May 1972) .

2 25

APPENDIX A

MARKOV PROCESSES

227

APPENDIX A

MARKOV PROCESSES

There i s a s imple , e legant , and powerfu l theory for handl ing

models of t h e t y p e c o n s i d e r e d i n t h i s r e p o r t - - p r o v i d i n g t h a t t h e

fo l lowing cond i t ion ho lds . The p r o b a b i l i t y P i j of making any state

t r a n s i t i o n i s independent of t h e manner. i n which state w a s reached.

(The t r a n s i t i o n p r o b a b i l i t i e s are h i s t o r y i n d e p e n d e n t) . I n t h i s case

t h e model i s s a i d t o h a v e t h e Markov p rope r ty and t o d e f i n e a Markov

p rocess . No te t ha t abnorma l even t s o f t he t r ans i en t o r spon taneous

f a i l u r e t y p e h a v e t h i s c h a r a c t e r , b u t f a i l u r e s i n e q u i p m e n t t h a t
II wears ou t " l i ke an au tomobi l e do no t .

Markov p rocesses can be t r ea t ed as e i t h e r d i s c r e t e t i m e o r con t in -

uous t i m e p rocesses . In t he fo rmer ca se , t i m e i s assumed to p roceed

in d i scont inuous " t icks" where one state t r ans i t i on mus t occu r a t

each t ick. For example, consider the fol lowing model for a c o i n

f l i pp ing expe r imen t i n wh ich the o b j e c t i s t o o b t a i n two "heads" i n a

row.

The state diagram i s :

1 2 3

Tail Either

Tail

229

and the whole process can be described by the transition matrix of P ij

Given the probabilities of occupancy of a particular state at time n, say

then p (n+l) is given by p . Or, given p , (n>, ('1 then p(n) = p(0)pnm

For example, with

P (O) = (1 0 0)

One easily gets

and so forth. The general solution for p!"' is known to be of the form
1

230

A closed form expression for the probability of occupancy of each

state may now be easily obtained using the initial probabilities for

p"), p(l) and P(~). For example, the probability 'of being state 3 after

n steps (tosses) is

We show the above example in some detail for comparison with the
continuous-time formulation below.

A continuous-time Markov process may be derived as a limiting case

of a discrete-time process in which the ticks of time become infin-
itesimal; however, we take a slightly different approach. Since we are
less interested in particular transition probabilities than we are in

probabilities of state occupancy, we derive an expression for the prob-

ability of being in a state g at time t via another limiting argument.

For this purpose we temporarily assume that the probability of

transition from any state i to another state j is proportional to the
time spent in state for sufficiently small times. That is

Pij = P At J At + 0

where P is a constant with dimensions time and value 0 P <-. -1

This assumption is necessarily true for uniformly distributed
random stochastic events that occur at an average rate p independent

of past history (the Markov property).

For any state q

231

we can then write

n m

FZq L i#q

or taking the limit, At 4 0

n m

The above system of linear differential equations, together with an ini-

tial vector of state occupation probabilities, say P = (1,0,0,0 ... 0) ,

completely determines the state of the system for all time.
i

To observe the correspondence between this formulation and the dis-
crete time case (and also to greatly facilitate solution of the system)

one can take the Laplace transform of each equation. With transform
m

variable S and = C 8 . the above becomes
q 1 1

or more neatly as the matrix equation P (S) X M = P(O), as follows.
-1. *

X

(S + B,) - CY -CY

(S + 8,) -
12 13 - ... CY In

2n -CY 21 23 - ... cy

232

Observe

1.

2.

3 .

4 .

that:

The differential equations above are similar but not identical

to the Chapman-Kolmogorov equations which describe transition

probabilities. Our equations describe occupation probabilities.

The transform technique moves us into a purely algebraic
domain where approximations and limits, may be made before

inverting to obtain solutions in the time-domain.

The general solution of the system of equations is given (as

in the discrete case) by P (t) = C a.e where hi are the
roots of the polynomial equation Det. M = 0 .

hit
4 1

Two limiting cases of behavior are immediately apparent:

a. As t -+ 03 P (t) -, alehlt where h is the numerically largest
9 1

eigenvalue.

b. Since P (S) = N (S) / D (S) , a ratio of polynomials, we have
4 9

4
that as S -, OD P (S) + A S-(k+l) k + 0 , 1, 2 . . . where
A is a constant. Therefore as t + 0 , Pq(t) -+y A k t k.

The latter limit theorem is one of several kinds of argument that can be

used to deduce general features of a solution without actually obtaining

it.

Examples :

A. -0
Det M = S(S + a) roots 1, -a

*
pl(s) = s] 1 0

Det M = - 1
S + a

* (S + a)
P2(S) = [-; 3 Det M = a 1 1 S(S + a) S S + a ="-

233

P,(t) = e , P2(t) = 1 - e -at -at

P,(t) + P2(t) E 1. (This is the simple exponential occupation
distribution for state 1)

B .

-C

M = (S + b + c) 0 Det M = S (S + a) (S + b + c) - acS
-b S '1

* ab ab
'3") = S (S + a)(S + b + c) - acS 3 as S -)a

1 2 P3(t) M y abt as t -)O

There are opportunitis for automation of the solution process. Where

the transition rates are numeric quantities, the explicit solutions are

easily obtained by machine using linear equation solvers and eigenvalue

routines. One can also use algebraic manipulation programs to obtain the

parameterized expressions Pn(S). For state graphs without cycles, the

individual P. (S) are easily obtained by a "chain rule."

J-

9;

1

For example, no consideration of the associated matrix M was required
in the system below.

234

C.

P1(S) = 1
* 1

(S + a + b)

P;(S) = bP:(S)/(S + c)

p;(s) = [aP;(S) + cPi(S)]/(S + d)
J.

Pi(S) = dP2(S)/S
-k

Furthermore, questions concerning the "dependency of P (t) on the value
of a'' can be answered by taking the appropriate partial derivitives in

2

the S domain. To illustrate

a 9;

aa (S + a + b) (S + d) - P2(S) = P1(S)?(S + d) =
>k 1

or

- P (t) - t a
aa 2 as t '0

4 . Incorporation of Non-Markov Behavior

The pure Markov model is an excellent approximation to the situation

where all state transitions in the model correspond to stochastic

(usually abnormal) events such as component failure or the onset of a

transient. However, there are three other types of behavior that we
would like to be able to handle and it seems particularly important to

try to incorporate these events into a pure Markox model so that our

powerful analysis techniques will still be applicable:

235

a. P rocesses o f f i xed du ra t ion (such as the runn ing o f
a p rogram) t ha t occu r e i t he r (1) p e r i o d i c a l l y i n t i m e
o r (2) i n r e s p o n s e t o a n o t h e r e v e n t .

b. P rocesses w i th nonexponen t i a l p robab i l i t y dens i ty
func t ions , such as t r a n s i e n t s w h i c h may have a narrow
d i s t r i b u t i o n o f d u r a t i o n times.

The two types o f p rocess i n a. a b o v e m i g h t b e c a l l e d d e t e r m i n i s t i c

i n t h e s e n s e t h a t t h e y i n v o l v e b e h a v i o r t h a t i s d e f i n i t e l y h i s t o r y -

d e p e n d e n t . F i r s t c o n s i d e r t h e f o l l o w i n g s i t u a t i o n :

n

d

Suppose there i s a d i agnos t i c check t ha t i s v e r y b r i e f i n d u r a t i o n a n d

i s execu ted pe r iod ica l ly w i th a low d u t y c y c l e . S t a r t i n g i n state 1 w e

have two p o s s i b i l i t i e s . I f a n e r r o r o c c u r s d u r i n g a pe r iod when t h e

d i agnos t i c check i s not running then w e w i l l go t o s t a t e 3. I f , on t h e

o the r hand , t he d i agnos i s rou t ine happens t o be ope ra t ive when t h e e r r o r

occurs then w e f i n d o u r s e l v e s i n state 2 where t he e r ro r may o r may n o t

b e d e t e c t e d . I f i t is, w e r e t u r n (i n t h i s s i m p l i f i e d s i t u a t i o n) t o s ta te

1 otherwise we go t o s ta te 3 . Now s u p p o s e t h a t t h e d i a g n o s t i c r o u t i n e

r u n s f o r a pe r iod T and i s invoked wi th per iod 7 >> T Further sup-

p o s e t h a t t h e a c t u a l e r r o r r a t e i s p and t h a t p C 1/7 (e r r o r s o c c u r

less f r equen t ly t han t he d i agnos i s pe r iod) . Under these c i rcumstances

it i s a n e x c e l l e n t a p p r o x i m a t i o n t o a s s u m e t h a t e r r o r s a r e c o m p l e t e l y

u n c o r r e l a t e d w i t h t h e i n i t i a t i o n o f t h e d i a g n o s t i c t e s t . Therefore we

may a s s i g n t o t h e t r a n s i t i o n r a t e s a and b t h e v a l u e s

1 2 1'

2 .

236

T 1 b = p -
2'

where, of course, a + b = p . Moreover, if the probability that error

detection actually occurs when reaching state 2 is 2, then the rates

are a good approximation to actual transition probabilities. That is,

with p = 1 one would expect on the average one transition from 2 to 3
in the T and this, by definition gives the corresponding transition

rate C. Generally, the above treatment must be quite satisfactory so

long as p CK 1 / T 2 e< 1hl, as will frequently be the case since typical
values for these quantities are

1'

p - 10 - 3 hour -1

The second form of deterministic behavior we need to adequately

handle is the case in which fixed delays occur. Consider the following

situation:

(GOOD)

237

Here w e assume t h a t t h e e v e n t o f a f a u l t when i n s ta te 1 causes t he

s y s t e m t o e n t e r a state 2 i n which a reconf igura t ion program i s s t a r t e d

up. This program runs for a f i x e d t i m e 7 . If a n o t h e r f a u l t o r e r r o r

occurs during the running of the program, w e e n t e r a n u n s a t i s f a c t o r y

s ta te 3 . O t h e r w i s e a f t e r t i m e T w e e n t e r a s a t i s f a c t o r y state 4 . The

a c t u a l o c c u p a t i o n p r o b a b i l i t i e s f o r states 2, 3, and 4 are as shown below:

An a t tempt to a p p r o x i m a t e t h i s s i t u a t i o n by a s s ign ing a cons t an t

t r a n s i t i o n r a t e t o i s no t a very good s t r a t egy because p would then

appea r a s shown below:
4

p4

1 "

-7

which would a s s i g n a r e l a t i v e l y l a r g e p r o b a b i l i t y t

t o 4 dur ing t he pe r iod when t h i s i s n o t p o s s i b l e .

:o a tr a n s i t i o n f r o m 2

An a r t i f i ce fo r improv ing t he approx ima t ion i s t o r e p l a c e state

by a chain of states, a s o r t o f p r o b a b i l i s t i c d e l a y l i n e :

2

238

n

now the easily computed transform of the probability to be in state 4

is of the form l /S (B /S + B)n and in the time domain p now appears as

f 01 lows :
4

p4

1 ”

which is a much closer approximation to the desired behavfor.

General Probability Distribution Function

In general, if we wish to approximate some probability distribution
function. (say behavior of a particular type of transient), it is always

possible to obtain an arbitrarily close approximation by replacing the
state having the odd behavior with a series-parallel combination of

states having real positive transition rates as depicted below:

239

Construction of these approximations is much like the problem of

synthesizing passive electrical networks having prescribed transfer

characteristics. The "best" approximation to a given probability func-

tion for a fixed number of states would lead to the use of complex

rather than real transition rates. This is an interesting possibility

to consider in future research. To effectively employ such techniques

we would need some theorems that say when it is safe to use an approx-

imation that would lead to nonphysical occupation probabilities for

some of the fictitious states involved in the synthesis.

240

-
1. Report No. 2. Government Accession No. 3. Racipimt'r Catalog No.

NASA CR-3011 I . "

4. Title and Subtitle 5. Report Date

DESIGN STUDY OF SOFTWARE-IMPLEMENTED FAULT-TOLERANCE June 1982
' (SIFT) COMPUTER 6. Performing Organization Code

7. AuthodsJ J. H. Wensley, J. Goldberg, M. W. Green, 8. Performing Organization Report No.

W. H. Kautz, K. N. Levitt, M. E. Mills, R. E. Shostak,
P. M. Whiting-O'Keefe, and H. M. Zeidler 10. Work Unit No.

9. Performing Organization Name and Address

SRI International

Menlo Park, California 94025
NAS1-13792 333 Ravenswood Avenue

11. Contract or Grant No.

, 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration
Washington, DC 20546

14. Sponsoring Agency Code

"

15. Supplementary Notes

Langley Technical Monitor: Nicholas D. Murray
Final Report

I 16. Abstract I
This paper reports on a continuing effort to design a flyable SIFT computer that
can demonstrate the feasibility of an integrated function, fault-tolerant computer
in commercial aviation. The goals of the work reported in this paper are:

(-1) to develop the SIFT design concept to a point at which its potential
reliability may be evaluated with reasonable accuracy;

(2) to investigate -alternate strategies for physical implementation,
using available or specially designed components;

(3) to prove the correctness of the hardware and software designs; and

(4) to model the system and evaluate its effectiveness from a
fault-tolerance point of view.

17. Key Words (Suggerted by Author(s))
~~ -

18. Distribution Statement
~~ I

SIFT

Ultrareliability
Faul t tolerant

Unclassified - Unlimited

Multicomputer system
Subject Category 62 Reconf igurable computer system

19. Security Classif. (of this report)

Unclassified 252 A1 2 Unclassified
20. Security Classif. (of this page) 21. No. of Pages 22. Rice

. - . A

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1982

